NXP MIMXRT1064-EVK

Overview

The i.MX RT1064 adds to the industry’s first crossover processor series and expands the i.MX RT series to three scalable families. The i.MX RT1064 doubles the On-Chip SRAM to 1MB while keeping pin-to-pin compatibility with i.MX RT1050. This series introduces additional features ideal for real-time applications such as High-Speed GPIO, CAN-FD, and synchronous parallel NAND/NOR/PSRAM controller. The i.MX RT1064 runs on the Arm® Cortex-M7® core up to 600 MHz.

MIMXRT1064-EVK

Hardware

  • MIMXRT1064DVL6A MCU (600 MHz, 1024 KB on-chip memory, 4096KB on-chip QSPI flash)

  • Memory

    • 256 Mbit SDRAM

    • 64 Mbit QSPI Flash

    • 512 Mbit Hyper Flash

    • TF socket for SD card

  • Display

    • LCD connector

  • Ethernet

    • 10/100 Mbit/s Ethernet PHY

  • USB

    • USB 2.0 OTG connector

    • USB 2.0 host connector

  • Audio

    • 3.5 mm audio stereo headphone jack

    • Board-mounted microphone

    • Left and right speaker out connectors

  • Power

    • 5 V DC jack

  • Debug

    • JTAG 20-pin connector

    • OpenSDA with DAPLink

  • Sensor

    • FXOS8700CQ 6-axis e-compass

    • CMOS camera sensor interface

  • Expansion port

    • Arduino interface

  • CAN bus connector

For more information about the MIMXRT1064 SoC and MIMXRT1064-EVK board, see these references:

Supported Features

NXP considers the MIMXRT1064-EVK as the superset board for the i.MX RT10xx family of MCUs. This board is a focus for NXP’s Full Platform Support for Zephyr, to better enable the entire RT10xx family. NXP prioritizes enabling this board with new support for Zephyr features. The mimxrt1064_evk board configuration supports the following hardware features:

Interface

Controller

Driver/Component

NVIC

on-chip

nested vector interrupt controller

SYSTICK

on-chip

systick

DISPLAY

on-chip

display

VIDEO

on-chip

video, using CSI

FLASH

on-chip

QSPI flash

GPIO

on-chip

gpio

I2C

on-chip

i2c

WATCHDOG

on-chip

watchdog

PWM

on-chip

pwm

SDHC

on-chip

disk access

UART

on-chip

serial port-polling; serial port-interrupt

ADC

on-chip

adc

ENET

on-chip

ethernet

USB

on-chip

USB device

CAN

on-chip

can

SPI

on-chip

spi

GPT

on-chip

gpt

DMA

on-chip

dma

HWINFO

on-chip

Unique device serial number

TRNG

on-chip

entropy

FLEXSPI

on-chip

flash programming

The default configuration can be found in the defconfig file: boards/arm/mimxrt1064_evk/mimxrt1064_evk_defconfig

Other hardware features are not currently supported by the port.

Connections and I/Os

The MIMXRT1064 SoC has four pairs of pinmux/gpio controllers.

Name

Function

Usage

GPIO_AD_B0_00

LPSPI1_SCK

SPI

GPIO_AD_B0_01

LPSPI1_SDO

SPI

GPIO_AD_B0_02

LPSPI3_SDI/LCD_RST| SPI/LCD Display

GPIO_AD_B0_03

LPSPI3_PCS0

SPI

GPIO_AD_B0_05

GPIO

SD Card

GPIO_AD_B0_09

GPIO/ENET_RST

LED/Ethernet

GPIO_AD_B0_10

GPIO/ENET_INT

GPIO/Ethernet

GPIO_AD_B0_11

GPIO

Touch Interrupt

GPIO_AD_B0_12

LPUART1_TX

UART Console

GPIO_AD_B0_13

LPUART1_RX

UART Console

GPIO_AD_B1_06

LPUART3_TX

UART Arduino

GPIO_AD_B1_07

LPUART3_RX

UART Arduino

WAKEUP

GPIO

SW0

GPIO_B0_00

LCD_CLK

LCD Display

GPIO_B0_01

LCD_ENABLE

LCD Display

GPIO_B0_02

LCD_HSYNC

LCD Display

GPIO_B0_03

LCD_VSYNC

LCD Display

GPIO_B0_04

LCD_DATA00

LCD Display

GPIO_B0_05

LCD_DATA01

LCD Display

GPIO_B0_06

LCD_DATA02

LCD Display

GPIO_B0_07

LCD_DATA03

LCD Display

GPIO_B0_08

LCD_DATA04

LCD Display

GPIO_B0_09

LCD_DATA05

LCD Display

GPIO_B0_10

LCD_DATA06

LCD Display

GPIO_B0_11

LCD_DATA07

LCD Display

GPIO_B0_12

LCD_DATA08

LCD Display

GPIO_B0_13

LCD_DATA09

LCD Display

GPIO_B0_14

LCD_DATA10

LCD Display

GPIO_B0_15

LCD_DATA11

LCD Display

GPIO_B1_00

LCD_DATA12

LCD Display

GPIO_B1_01

LCD_DATA13

LCD Display

GPIO_B1_02

LCD_DATA14

LCD Display

GPIO_B1_03

LCD_DATA15

LCD Display

GPIO_B1_04

ENET_RX_DATA00

Ethernet

GPIO_B1_05

ENET_RX_DATA01

Ethernet

GPIO_B1_06

ENET_RX_EN

Ethernet

GPIO_B1_07

ENET_TX_DATA00

Ethernet

GPIO_B1_08

ENET_TX_DATA01

Ethernet

GPIO_B1_09

ENET_TX_EN

Ethernet

GPIO_B1_10

ENET_REF_CLK

Ethernet

GPIO_B1_11

ENET_RX_ER

Ethernet

GPIO_B1_12

GPIO

SD Card

GPIO_B1_14

USDHC1_VSELECT

SD Card

GPIO_B1_15

BACKLIGHT_CTL

LCD Display

GPIO_EMC_40

ENET_MDC

Ethernet

GPIO_EMC_41

ENET_MDIO

Ethernet

GPIO_AD_B0_09

ENET_RST

Ethernet

GPIO_AD_B0_10

ENET_INT

Ethernet

GPIO_SD_B0_00

USDHC1_CMD/LPSPI1_SCK | SD Card/SPI

GPIO_SD_B0_01

USDHC1_CLK/LPSPI1_PCS0 | SD Card/SPI

GPIO_SD_B0_02

USDHC1_DATA0/LPSPI1_SDO | SD Card/SPI

GPIO_SD_B0_03

USDHC1_DATA1/LPSPI1_SDI | SD Card/SPI

GPIO_SD_B0_04

USDHC1_DATA2

SD Card

GPIO_SD_B0_05

USDHC1_DATA3

SD Card

GPIO_SD_B1_05

FLEXSPIA_DQS

QSPI Flash

GPIO_SD_B1_06

FLEXSPIA_SS0_B

QSPI Flash

GPIO_SD_B1_07

FLEXSPIA_SCLK

QSPI Flash

GPIO_SD_B1_08

FLEXSPIA_DATA00

QSPI Flash

GPIO_SD_B1_09

FLEXSPIA_DATA01

QSPI Flash

GPIO_SD_B1_10

FLEXSPIA_DATA02

QSPI Flash

GPIO_SD_B1_11

FLEXSPIA_DATA03

QSPI Flash

GPIO_AD_B1_11

ADC

ADC1 Channel 0

GPIO_AD_B1_10

ADC

ADC1 Channel 1

Note

In order to use the SPI peripheral on this board, resistors R278, R279, R280 and R281 must be populated with zero ohm resistors

System Clock

The MIMXRT1064 SoC is configured to use the 32 KHz low frequency oscillator on the board as a source for the GPT timer to generate a system clock.

Serial Port

The MIMXRT1064 SoC has eight UARTs. LPUART1 is configured for the console and the remaining are not used.

Programming and Debugging

Build and flash applications as usual (see Building an Application and Run an Application for more details).

Configuring a Debug Probe

Note

When the device transitions into low power states, the debugger may be unable to access the chip. Use caution when enabling CONFIG_PM, and if the debugger cannot flash the part, see Troubleshooting

A debug probe is used for both flashing and debugging the board. This board is configured by default to use the OpenSDA DAPLink Onboard Debug Probe, however the pyOCD Debug Host Tools do not yet support programming the external flashes on this board so you must reconfigure the board for one of the following debug probes instead.

Configuring a Console

Regardless of your choice in debug probe, we will use the OpenSDA microcontroller as a usb-to-serial adapter for the serial console. Check that jumpers J45 and J46 are on (they are on by default when boards ship from the factory) to connect UART signals to the OpenSDA microcontroller.

Connect a USB cable from your PC to J41.

Use the following settings with your serial terminal of choice (minicom, putty, etc.):

  • Speed: 115200

  • Data: 8 bits

  • Parity: None

  • Stop bits: 1

Using SWO

SWO can be used as a logging backend, by setting CONFIG_LOG_BACKEND_SWO=y. Your SWO viewer should be configured with a CPU frequency of 132MHz, and SWO frequency of 7500KHz.

Flashing

Here is an example for the Hello World application.

# From the root of the zephyr repository
west build -b mimxrt1064_evk samples/hello_world
west flash

Open a serial terminal, reset the board (press the SW9 button), and you should see the following message in the terminal:

***** Booting Zephyr OS v1.14.0-rc1 *****
Hello World! mimxrt1064_evk

Debugging

Here is an example for the Hello World application.

# From the root of the zephyr repository
west build -b mimxrt1064_evk samples/hello_world
west debug

Open a serial terminal, step through the application in your debugger, and you should see the following message in the terminal:

***** Booting Zephyr OS v1.14.0-rc1 *****
Hello World! mimxrt1064_evk

Troubleshooting

If the debug probe fails to connect with the following error, it’s possible that the boot header in QSPI flash is invalid or corrupted. The boot header is configured by CONFIG_NXP_IMX_RT_BOOT_HEADER.

Remote debugging using :2331
Remote communication error.  Target disconnected.: Connection reset by peer.
"monitor" command not supported by this target.
"monitor" command not supported by this target.
You can't do that when your target is `exec'
(gdb) Could not connect to target.
Please check power, connection and settings.

You can fix it by erasing and reprogramming the QSPI flash with the following steps:

  1. Set the SW7 DIP switches to ON-OFF-ON-OFF to prevent booting from QSPI flash.

  2. Reset by pressing SW9

  3. Run west debug or west flash again with a known working Zephyr application.

  4. Set the SW7 DIP switches to OFF-OFF-ON-OFF to boot from QSPI flash.

  5. Reset by pressing SW9

If the west flash or debug commands fail, and the command hangs while executing runners.jlink, confirm the J-Link debug probe is configured, powered, and connected to the EVK properly. See Using J-Link for more details.