NXP MIMXRT1015-EVK

Overview

The i.MX RT1015 expands the i.MX RT crossover processor families by providing high-performance feature set in low-cost LQFP packages, further simplifying board design and layout for customers. The i.MX RT1015 runs on the Arm® Cortex®-M7 core at 500 MHz.

MIMXRT1015-EVK

Hardware

  • MIMXRT1015DAF5A MCU

  • Memory

    • 128 Mbit QSPI Flash

  • Connectivity

    • Micro USB host and OTG connectors

    • Arduino interface

  • Audio

    • Audio Codec

    • 4-pole audio headphone jack

    • External speaker connection

    • Microphone

  • Debug

    • JTAG 10-pin connector

    • OpenSDA with DAPLink

For more information about the MIMXRT1015 SoC and MIMXRT1015-EVK board, see these references:

Supported Features

The mimxrt1015_evk board configuration supports the hardware features listed below. For additional features not yet supported, please also refer to the NXP MIMXRT1064-EVK , which is the superset board in NXP’s i.MX RT10xx family. NXP prioritizes enabling the superset board with NXP’s Full Platform Support for Zephyr. Therefore, the mimxrt1064_evk board may have additional features already supported, which can also be re-used on this mimxrt1015_evk board:

Interface

Controller

Driver/Component

NVIC

on-chip

nested vector interrupt controller

SYSTICK

on-chip

systick

GPIO

on-chip

gpio

I2C

on-chip

i2c

SPI

on-chip

spi

UART

on-chip

serial port-polling; serial port-interrupt

USB

on-chip

USB device

ADC

on-chip

ADC

GPT

on-chip

gpt

TRNG

on-chip

entropy

The default configuration can be found in the defconfig file: boards/arm/mimxrt1015_evk/mimxrt1015_evk_defconfig

Other hardware features are not currently supported by the port.

Connections and I/Os

The MIMXRT1015 SoC has five pairs of pinmux/gpio controllers.

Name

Function

Usage

GPIO_AD_B0_05

GPIO

LED

GPIO_EMC_09

GPIO

SW4

GPIO_AD_B0_06

LPUART1_TX

UART Console

GPIO_AD_B0_07

LPUART1_RX

UART Console

GPIO_EMC_32

LPUART4_TX

UART Console

GPIO_EMC_33

LPUART4_RX

UART Console

GPIO_AD_B1_15

LPI2C1_SDA

I2C SDA

GPIO_AD_B1_14

LPI2C1_CLK

I2C SCL

GPIO_AD_B0_10

LPSPI1_SCK

SPI

GPIO_AD_B0_11

LPSPI1_PCS0

SPI

GPIO_AD_B0_12

LPSPI1_SDO

SPI

GPIO_AD_B0_13

LPSPI1_SDI

SPI

GPIO_AD_B0_14

ADC

ADC1 Channel 1

GPIO_AD_B1_13

ADC

ADC1 Channel 13

System Clock

The MIMXRT1015 SoC is configured to use the 32 KHz low frequency oscillator on the board as a source for the GPT timer to generate a system clock.

Serial Port

The MIMXRT1015 SoC has four UARTs. LPUART1 is configured for the console, and the remaining are not used.

Programming and Debugging

Build and flash applications as usual (see Building an Application and Run an Application for more details).

Configuring a Debug Probe

A debug probe is used for both flashing and debugging the board. This board is configured by default to use the OpenSDA DAPLink Onboard Debug Probe, however the pyOCD Debug Host Tools do not yet support programming the external flashes on this board so you must reconfigure the board for one of the following debug probes instead.

Configuring a Console

Regardless of your choice in debug probe, we will use the OpenSDA microcontroller as a usb-to-serial adapter for the serial console. Check that jumpers J45 and J46 are on (they are on by default when boards ship from the factory) to connect UART signals to the OpenSDA microcontroller.

Connect a USB cable from your PC to J41.

Use the following settings with your serial terminal of choice (minicom, putty, etc.):

  • Speed: 115200

  • Data: 8 bits

  • Parity: None

  • Stop bits: 1

Flashing

Here is an example for the Hello World application.

# From the root of the zephyr repository
west build -b mimxrt1015_evk samples/hello_world
west flash

Open a serial terminal, reset the board (press the SW9 button), and you should see the following message in the terminal:

***** Booting Zephyr OS v1.14.0-rc1-1297-g312d75f2459e *****
Hello World! mimxrt1015_evk