ST Nucleo U575ZI Q
Overview
The Nucleo U575ZI Q board, featuring an ARM Cortex-M33 based STM32U575ZI MCU, provides an affordable and flexible way for users to try out new concepts and build prototypes by choosing from the various combinations of performance and power consumption features. Here are some highlights of the Nucleo U575ZI Q board:
STM32U575ZI microcontroller in LQFP144 package
Internal SMPS to generate V core logic supply
Two types of extension resources:
Arduino Uno V3 connectivity
ST morpho extension pin headers for full access to all STM32 I/Os
On-board ST-LINK/V3E debugger/programmer
Flexible board power supply:
USB VBUS or external source(3.3V, 5V, 7 - 12V)
ST-Link V3E
Three users LEDs
Two push-buttons: USER and RESET
USB Type-C™ Sink device FS
Hardware
The STM32U575xx devices are an ultra-low-power microcontrollers family (STM32U5 Series) based on the high-performance Arm|reg| Cortex|reg|-M33 32-bit RISC core. They operate at a frequency of up to 160 MHz.
Ultra-low-power with FlexPowerControl (down to 300 nA Standby mode and 19.5 uA/MHz run mode)
Core: ARM® 32-bit Cortex® -M33 CPU with TrustZone® and FPU.
Performance benchmark:
1.5 DMPIS/MHz (Drystone 2.1)
651 CoreMark® (4.07 CoreMark® /MHZ)
Security
Arm® TrustZone® and securable I/Os memories and peripherals
Flexible life cycle scheme with RDP (readout protection) and password protected debug
Root of trust thanks to unique boot entry and secure hide protection area (HDP)
Secure Firmware Installation thanks to embedded Root Secure Services
Secure Firmware Update support with TF-M
HASH hardware accelerator
Active tampers
True Random Number Generator NIST SP800-90B compliant
96-bit unique ID
512-byte One-Time Programmable for user data
Clock management:
4 to 50 MHz crystal oscillator
32 kHz crystal oscillator for RTC (LSE)
Internal 16 MHz factory-trimmed RC ( ±1%)
Internal low-power 32 kHz RC ( ±5%)
2 internal multispeed 100 kHz to 48 MHz oscillators, including one auto-trimmed by LSE (better than ±0.25 % accuracy)
3 PLLs for system clock, USB, audio, ADC
Internal 48 MHz with clock recovery
Power management
Embedded regulator (LDO)
Embedded SMPS step-down converter supporting switch on-the-fly and voltage scaling
RTC with HW calendar and calibration
Up to 136 fast I/Os, most 5 V-tolerant, up to 14 I/Os with independent supply down to 1.08 V
Up to 24 capacitive sensing channels: support touchkey, linear and rotary touch sensors
Up to 17 timers and 2 watchdogs
2x 16-bit advanced motor-control
2x 32-bit and 5 x 16-bit general purpose
4x low-power 16-bit timers (available in Stop mode)
2x watchdogs
2x SysTick timer
ART accelerator
8-Kbyte instruction cache allowing 0-wait-state execution from Flash and external memories: up to 160 MHz, MPU, 240 DMIPS and DSP
4-Kbyte data cache for external memories
Memories
2-Mbyte Flash memory with ECC, 2 banks read-while-write, including 512 Kbytes with 100 kcycles
786-Kbyte SRAM with ECC OFF or 722-Kbyte SRAM including up to 322-Kbyte SRAM with ECC ON
External memory interface supporting SRAM, PSRAM, NOR, NAND and FRAM memories
2 Octo-SPI memory interfaces
Rich analog peripherals (independent supply)
14-bit ADC 2.5-Msps, resolution up to 16 bits with hardware oversampling
12-bit ADC 2.5-Msps, with hardware oversampling, autonomous in Stop 2 mode
2 12-bit DAC, low-power sample and hold
2 operational amplifiers with built-in PGA
2 ultra-low-power comparators
Up to 22 communication interfaces
USB Type-C / USB power delivery controller
USB OTG 2.0 full-speed controller
2x SAIs (serial audio interface)
4x I2C FM+(1 Mbit/s), SMBus/PMBus
6x USARTs (ISO 7816, LIN, IrDA, modem)
3x SPIs (5x SPIs with dual OCTOSPI in SPI mode)
1x FDCAN
2x SDMMC interface
16- and 4-channel DMA controllers, functional in Stop mode
1 multi-function digital filter (6 filters)+ 1 audio digital filter with sound-activity detection
CRC calculation unit
Development support: serial wire debug (SWD), JTAG, Embedded Trace Macrocell™
True Random Number Generator (RNG)
Graphic features
Chrom-ART Accelerator (DMA2D) for enhanced graphic content creation
1 digital camera interface
Mathematical co-processor
CORDIC for trigonometric functions acceleration
FMAC (filter mathematical accelerator)
More information about STM32U575ZI can be found here:
Supported Features
The Zephyr nucleo_u575zi_q board configuration supports the following hardware features:
Interface |
Controller |
Driver/Component |
---|---|---|
CAN/CANFD |
on-chip |
canbus |
CLOCK |
on-chip |
reset and clock control |
DAC |
on-chip |
DAC Controller |
GPIO |
on-chip |
gpio |
I2C |
on-chip |
i2c |
NVIC |
on-chip |
nested vector interrupt controller |
PINMUX |
on-chip |
pinmux |
SPI |
on-chip |
spi |
UART |
on-chip |
serial port-polling; serial port-interrupt |
WATCHDOG |
on-chip |
independent watchdog |
BKP SRAM |
on-chip |
Backup SRAM |
RNG |
on-chip |
True Random number generator |
Other hardware features are not yet supported on this Zephyr port.
The default configuration can be found in the defconfig file:
boards/arm/nucleo_u575zi_q/nucleo_u575zi_q_defconfig
Connections and IOs
Nucleo U575ZI Q Board has 9 GPIO controllers. These controllers are responsible for pin muxing, input/output, pull-up, etc.
For mode details please refer to STM32 Nucleo-144 board User Manual.
Default Zephyr Peripheral Mapping:
CAN/CANFD_TX: PD1
CAN/CANFD_RX: PD0
DAC1_OUT1 : PA4
I2C_1_SCL : PB8
I2C_1_SDA : PB9
I2C_2_SCL : PF1
I2C_2_SDA : PF0
LD1 : PC7
LD2 : PB7
LD3 : PG2
LPUART_1_TX : PG7
LPUART_1_RX : PG8
SPI_1_NSS : PA4
SPI_1_SCK : PA5
SPI_1_MISO : PA6
SPI_1_MOSI : PA7
UART_1_TX : PA9
UART_1_RX : PA10
UART_2_TX : PD5
UART_2_RX : PD6
USER_PB : PC13
System Clock
Nucleo U575ZI Q System Clock could be driven by internal or external oscillator, as well as main PLL clock. By default System clock is driven by PLL clock at 160MHz, driven by 4MHz medium speed internal oscillator.
Serial Port
Nucleo U575ZI Q board has 6 U(S)ARTs. The Zephyr console output is assigned to USART1. Default settings are 115200 8N1.
Backup SRAM
In order to test backup SRAM you may want to disconnect VBAT from VDD. You can
do it by removing SB50
jumper on the back side of the board.
Programming and Debugging
Nucleo U575ZI-Q board includes an ST-LINK/V3 embedded debug tool interface. This probe allows to flash the board using various tools.
Flashing
Board is configured to be flashed using west STM32CubeProgrammer runner. Installation of STM32CubeProgrammer is then required to flash the board.
Alternatively, openocd (provided in Zephyr SDK), JLink and pyocd can also be
used to flash and debug the board if west is told to use it as runner,
which can be done by passing either -r openocd
, -r jlink
or -r pyocd
.
For pyocd additional target information needs to be installed. This can be done by executing the following commands.
$ pyocd pack --update
$ pyocd pack --install stm32u5
Flashing an application to Nucleo U575ZI Q
Connect the Nucleo U575ZI Q to your host computer using the USB port. Then build and flash an application. Here is an example for the Hello World application.
Run a serial host program to connect with your Nucleo board:
$ minicom -D /dev/ttyACM0
Then build and flash the application.
# From the root of the zephyr repository
west build -b nucleo_u575zi_q samples/hello_world
west flash
You should see the following message on the console:
Hello World! arm
Debugging
Default flasher for this board is openocd. It could be used in the usual way. Here is an example for the Blinky application.
# From the root of the zephyr repository
west build -b nucleo_u575zi_q samples/basic/blinky
west debug
Building a secure/non-secure with Arm® TrustZone®
The TF-M applications can be run on this board, thanks to its Arm® TrustZone®
support.
In TF-M configuration, Zephyr is run on the non-secure domain. A non-secure image
can be generated using nucleo_u575zi_q_ns
as build target.
$ west build -b nucleo_u575zi_q_ns path/to/source/directory
Note: When building the *_ns
image with TF-M, build/tfm/api_ns/postbuild.sh
bash script
is run automatically in a post-build step to make some required flash layout changes.
Once the build is completed, run the following script to initialize the option bytes.
$ build/tfm/regression.sh
Finally, to flash the board, run:
$ west flash
Note: Check the build/tfm
directory to ensure that the commands required by these scripts
(readlink
, etc.) are available on your system. Please also check STM32_Programmer_CLI
(which is used for initialization) is available in the PATH.