nRF9160: Location
The Location sample demonstrates how you can retrieve the location of a device using GNSS, cellular or Wi-Fi positioning method. This sample uses the Location library.
Requirements
The sample supports the following development kits:
Hardware platforms |
PCA |
Board name |
Build target |
---|---|---|---|
PCA20035 |
thingy91_nrf9160 |
|
|
PCA10090 |
|
The sample is configured to compile and run as a non-secure application on nRF91’s Cortex-M33. Therefore, it automatically includes the Secure Partition Manager that prepares the required peripherals to be available for the application.
You can also configure it to use TF-M instead of Secure Partition Manager.
See also the requirements in Location library document.
Overview
The Location sample retrieves the location multiple times to illustrate the different ways of retrieving the location of a device. Each individual location request has been implemented in a separate function within the sample. In addition to the Location library, this sample uses LTE link controller to control the LTE connection.
Configuration
See Configuring your application for information about how to permanently or temporarily change the configuration.
Configuration options
Check and set the following configuration options for the sample:
- CONFIG_LOCATION_SAMPLE_GNSS_ANTENNA_ONBOARD - Configuration for onboard GNSS antenna (default)
This option enables the onboard GNSS antenna.
- CONFIG_LOCATION_SAMPLE_GNSS_ANTENNA_EXTERNAL - External GNSS antenna
This option enables the external GNSS antenna.
Additional configuration
Refer to the Location library document for configuring the location retrieval behavior, including supported location methods and services.
Configuration files
The sample provides predefined configuration files for typical use cases.
You can find the configuration files in the samples/nrf9160/location
directory.
The following files are available:
esp_8266_nrf9160ns.overlay
- DTC overlay for ESP8266 Wi-Fi chip support.overlay-esp-wifi.conf
- Config overlay for ESP8266 Wi-Fi chip support.overlay-pgps.conf
- Config overlay for P-GPS support.
Building and running
This sample can be found under samples/nrf9160/location
in the nRF Connect SDK folder structure.
The sample is built as a non-secure firmware image for the nrf9160dk_nrf9160_ns build target. Because of this, it automatically includes the Secure Partition Manager. You can also configure it to use TF-M instead of SPM.
See Building and programming an application for information about how to build and program the application.
ESP8266 Wi-Fi support
To build the Location sample with ESP8266 Wi-Fi chip support, use the -DDTC_OVERLAY_FILE=esp_8266_nrf9160ns.overlay
and -DOVERLAY_CONFIG=overlay-esp-wifi.conf
options.
For example:
west build -p -b nrf9160dk_nrf9160_ns -- -DDTC_OVERLAY_FILE=esp_8266_nrf9160ns.overlay -DOVERLAY_CONFIG=overlay-esp-wifi.conf
See Providing CMake options for more instructions on how to add these options.
P-GPS support
To build the Location sample with P-GPS support, use the -DOVERLAY_CONFIG=overlay-pgps.conf
option.
For example:
west build -p -b nrf9160dk_nrf9160_ns -- -DOVERLAY_CONFIG=overlay-pgps.conf
See Providing CMake options for more instructions on how to add this option.
Testing
After programming the sample to your development kit, complete the following steps to test it:
Connect the kit to the computer using a USB cable. The kit is assigned a COM port (Windows) or ttyACM device (Linux), which is visible in the Device Manager.
Connect to the kit with a terminal emulator (for example, PuTTY). See How to connect with PuTTY for the required settings.
Observe that the sample prints to the terminal.
Sample output
An example output of the sample:
Location sample started Connecting to LTE... Connected to LTE Requesting location with short GNSS timeout to trigger fallback to cellular... [00:00:06.481,262] <wrn> location: Timeout occurred [00:00:06.487,335] <wrn> location: Failed to acquire location using 'GNSS', trying with 'Cellular' next Got location: method: cellular latitude: 12.887095 longitude: 55.580397 accuracy: 1250.0 m Google maps URL: https://maps.google.com/?q=12.887095,55.580397 Requesting location with the default configuration... Got location: method: GNSS latitude: 12.893736 longitude: 55.575859 accuracy: 4.4 m date: 2021-10-28 time: 13:36:29.072 UTC Google maps URL: https://maps.google.com/?q=12.893736,55.575859 Requesting location with high GNSS accuracy... Got location: method: GNSS latitude: 12.893755 longitude: 55.575879 accuracy: 2.8 m date: 2021-10-28 time: 13:36:32.339 UTC Google maps URL: https://maps.google.com/?q=12.893755,55.575879 Requesting Wi-Fi location with GNSS and cellular fallback... Got location: method: GNSS latitude: 12.893770 longitude: 55.575884 accuracy: 4.5 m date: 2021-10-28 time: 13:36:45.895 UTC Google maps URL: https://maps.google.com/?q=12.893770,55.575884 Requesting 30s periodic GNSS location... Got location: method: GNSS latitude: 12.893765 longitude: 55.575912 accuracy: 4.4 m date: 2021-10-28 time: 13:36:47.536 UTC Google maps URL: https://maps.google.com/?q=12.893765,55.575912 Got location: method: GNSS latitude: 12.893892 longitude: 55.576090 accuracy: 8.4 m date: 2021-10-28 time: 13:37:17.685 UTC Google maps URL: https://maps.google.com/?q=12.893892,55.576090
Dependencies
This sample uses the following nRF Connect SDK libraries:
In addition, it uses the following sample: