ST Nucleo G071RB

Overview

The Nucleo G071RB board features an ARM Cortex-M0+ based STM32G071RB MCU with a wide range of connectivity support and configurations. Here are some highlights of the Nucleo G071RB board:

  • STM32 microcontroller in QFP64 package

  • Two types of extension resources:

    • Arduino Uno V3 connectivity

    • ST morpho extension pin headers for full access to all STM32 I/Os

  • On-board ST-LINK/V2-1 debugger/programmer with SWD connector

  • Flexible board power supply:

    • USB VBUS or external source(3.3V, 5V, 7 - 12V)

    • Power management access point

  • Three LEDs: USB communication (LD1), user LED (LD4), power LED (LD3)

  • Two push-buttons: USER and RESET

Nucleo G071RB

More information about the board can be found at the Nucleo G071RB website 1.

Hardware

Nucleo G071RB provides the following hardware components:

  • STM32 microcontroller in LQFP64 package

  • Two types of extension resources:

    • Arduino* Uno V3 connectivity

    • ST morpho extension pin headers for full access to all STM32 I/Os

  • ARM* mbed*

  • On-board ST-LINK/V2-1 debugger/programmer with SWD connector:

    • Selection-mode switch to use the kit as a standalone ST-LINK/V2-1

  • Flexible board power supply:

    • USB VBUS or external source (3.3V, 5V, 7 - 12V)

    • Power management access point

  • Three LEDs:

    • USB communication (LD1), user LED (LD4), power LED (LD3)

  • Two push-buttons: USER and RESET

  • USB re-enumeration capability. Three different interfaces supported on USB:

    • Virtual COM port

    • Mass storage

    • Debug port

  • Support of wide choice of Integrated Development Environments (IDEs) including:

    • IAR

    • ARM Keil

    • GCC-based IDEs

More information about STM32G071RB can be found here:

Supported Features

The Zephyr nucleo_g071rb board configuration supports the following hardware features:

Interface

Controller

Driver/Component

MPU

on-chip

arm memory protection unit

NVIC

on-chip

nested vector interrupt controller

UART

on-chip

serial port-polling; serial port-interrupt

PINMUX

on-chip

pinmux

GPIO

on-chip

gpio

I2C

on-chip

i2c

SPI

on-chip

spi

CLOCK

on-chip

reset and clock control

COUNTER

on-chip

rtc

WATCHDOG

on-chip

independent watchdog

PWM

on-chip

pwm

ADC

on-chip

adc

DAC

on-chip

dac

Other hardware features are not yet supported in this Zephyr port.

The default configuration can be found in the defconfig file: boards/arm/nucleo_g071rb/nucleo_g071rb_defconfig

Connections and IOs

Each of the GPIO pins can be configured by software as output (push-pull or open-drain), as input (with or without pull-up or pull-down), or as peripheral alternate function. Most of the GPIO pins are shared with digital or analog alternate functions. All GPIOs are high current capable except for analog inputs.

Default Zephyr Peripheral Mapping:

  • UART_1 TX/RX : PC4/PC5

  • UART_2 TX/RX : PA2/PA3 (ST-Link Virtual Port Com)

  • I2C1 SCL/SDA : PB8/PB9 (Arduino I2C)

  • I2C2 SCL/SDA : PA11/PA12

  • SPI1 NSS/SCK/MISO/MOSI : PB0/PA5/PA6/PA7 (Arduino SPI)

  • SPI2 NSS/SCK/MISO/MOSI : PB12/PB13/PB14/PB15

  • USER_PB : PC13

  • LD4 : PA5

  • PWM : PA6

  • ADC1 IN0 : PA0

  • ADC1 IN1 : PA1

  • DAC1_OUT1 : PA4

For mode details please refer to STM32 Nucleo-64 board User Manual 3.

Programming and Debugging

Applications for the nucleo_g071rb board configuration can be built and flashed in the usual way (see Building an Application and Run an Application for more details).

Flashing

Nucleo G071RB board includes an ST-LINK/V2-1 embedded debug tool interface.

This interface is not yet supported by the openocd version included in the Zephyr SDK.

Instead, support can be enabled on pyocd by adding “pack” support with the following pyocd command:

$ pyocd pack --update
$ pyocd pack --install stm32g071rb

Note: To manually enable the openocd interface, You can still update, compile and install a ‘local’ openocd from the official openocd repo http://openocd.zylin.com . Then run the following openocd command where the ‘/usr/local/bin/openocd’is your path for the freshly installed openocd, given by “$ which openocd” :

$ west flash --openocd /usr/local/bin/openocd

Flashing an application to Nucleo G071RB

Here is an example for the Blinky application.

# From the root of the zephyr repository
west build -b nucleo_g071rb samples/basic/blinky
west flash

You will see the LED blinking every second.

Debugging

You can debug an application in the usual way. Here is an example for the Hello World application.

# From the root of the zephyr repository
west build -b nucleo_g071rb samples/hello_world
west debug