Hardware ID

The hardware ID sample prints a unique hardware ID by using the Hardware ID library.

Requirements

The sample supports the following development kits:

Hardware platforms

PCA

Board name

Build target

nRF9160 DK

PCA10090

nrf9160dk_nrf9160

nrf9160dk_nrf9160_ns nrf9160dk_nrf9160

nRF5340 DK

PCA10095

nrf5340dk_nrf5340

nrf5340dk_nrf5340_cpuapp_ns nrf5340dk_nrf5340_cpuapp

nRF52840 DK

PCA10056

nrf52840dk_nrf52840

nrf52840dk_nrf52840

When built for an _ns build target, the sample is configured to compile and run as a non-secure application with Cortex-M Security Extensions enabled. Therefore, it automatically includes Trusted Firmware-M that prepares the required peripherals and secure services to be available for the application.

Overview

You can use this sample to try out the different hardware ID sources supported by the Hardware ID library.

Configuration

See Configuring and building an application for information about how to permanently or temporarily change the configuration.

By default, the hardware ID sample uses the hardware ID provided by Zephyr’s HW Info API. You can change the hardware ID source by using one of the following conf files:

Building and running

This sample can be found under samples/hw_id in the nRF Connect SDK folder structure.

When built as firmware image for the _ns build target, the sample has Cortex-M Security Extensions (CMSE) enabled and separates the firmware between Non-Secure Processing Environment (NSPE) and Secure Processing Environment (SPE). Because of this, it automatically includes the Trusted Firmware-M (TF-M). To read more about CMSE, see Processing environments.

To build the sample with Visual Studio Code, follow the steps listed on the How to build an application page in the nRF Connect for VS Code extension documentation. See Configuring and building an application for other building scenarios, Programming an application for programming steps, and Testing and optimization for general information about testing and debugging in the nRF Connect SDK.

Testing

After programming the sample to your development kit, complete the following steps to test it:

  1. Connect to the kit that runs this sample with a terminal emulator (for example, nRF Connect Serial Terminal). See Testing and optimization for the required settings and steps.

  2. Reset the kit.

  3. Observe the following output:

    hw_id: DEADBEEF00112233
    

    If an error occurs, the sample prints the following message with the error code:

    hw_id_get failed (err -5)
    hw_id: unsupported
    

Dependencies

This sample uses the following nRF Connect SDK library: