Bluetooth: Peripheral Running Speed and Cadence Service (RSCS)

The peripheral RSCS sample demonstrates how to use the Running Speed and Cadence Service (RSCS).


The sample supports the following development kits:

Hardware platforms


Board name

Board target

nRF54H20 DK




nRF5340 DK



nrf5340dk/nrf5340/cpuapp/ns nrf5340dk/nrf5340/cpuapp

nRF52 DK




nRF52840 DK




nRF52833 DK




When built for a board target with the */ns variant, the sample is configured to compile and run as a non-secure application with Cortex-M Security Extensions enabled. Therefore, it automatically includes Trusted Firmware-M that prepares the required peripherals and secure services to be available for the application.

The sample also requires a phone or tablet running a compatible application, for example nRF Connect for Mobile or nRF Toolbox.


This sample demonstrates the use of Running Speed and Cadence Service. It simulates a sensor and sends measurements to the connected device, such as a phone or a tablet.

The mobile application on the device can configure sensor parameters using the SC Control Point characteristic.

User interface

LED 1:

Blinks, toggling on/off every second, when the main loop is running and the device is advertising.

LED 2:

Lit when connected.

Building and running

This sample can be found under samples/bluetooth/peripheral_rscs in the nRF Connect SDK folder structure.

When built as firmware image for a board target with the */ns variant, the sample has Cortex-M Security Extensions (CMSE) enabled and separates the firmware between Non-Secure Processing Environment (NSPE) and Secure Processing Environment (SPE). Because of this, it automatically includes the Trusted Firmware-M (TF-M). To read more about CMSE, see Processing environments.

To build the sample, follow the instructions in Configuring and building an application for your preferred building environment. See also Programming an application for programming steps and Testing and optimization for general information about testing and debugging in the nRF Connect SDK.


In the nRF repositories, building with sysbuild is enabled by default.


This testing procedure assumes that you are using nRF Connect for Mobile. After programming the sample to your development kit, test it by performing the following steps:

  1. Power on your development kit.

  2. Connect to the device through nRF Connect for Mobile (the device is advertising as “Nordic_RSCS”).

  3. Observe that the services of the connected device are shown.

  4. In Running Speed and Cadence Service, tap the Notify button for the “RSC Measurement” characteristic.

  5. Observe that notifications with the measurement values are received.

  6. In RSC Feature, tap the Read button to get the supported features.

  7. In Sensor Location, tap the Read button to read the location of the sensor.

  8. In SC Control Point, tap the Indicate button to control the sensor.

  9. The following Op Codes (with data if required) can be written into the SC Control Point:

    • 01 xx xx xx xx to set the Total Distance Value to the entered value in meters. (if the server supports the Total Distance Measurement feature).

    • 02 to start the sensor calibration process (if the server supports the Sensor Calibration feature).

    • 03 xx to update the sensor location (if the server supports the Multiple Sensor Locations feature).

    • 04 to get a list of supported localizations (if the server supports the Multiple Sensor Locations feature).

  10. The answer consists of the following fields:

    • 10 Response Code.

    • xx Required Op Code.

    • xx Status: 01 Success, 02 Op Code not supported, 03 Invalid Operand, 04 Operation Failed.

    • data Optional, response data.


This sample uses the following nRF Connect SDK libraries:

In addition, it uses the following Zephyr libraries:

  • include/zephyr/types.h

  • lib/libc/minimal/include/errno.h

  • include/sys/printk.h

  • include/random/random.h

  • API:

    • include/bluetooth/bluetooth.h

    • include/bluetooth/conn.h

    • include/bluetooth/uuid.h

    • include/bluetooth/gatt.h

The sample also uses the following secure firmware component: