Wi-Fi: Shell

This sample allows you to test Nordic Semiconductor’s Wi-Fi® chipsets.

Requirements

The sample supports the following development kit:

Hardware platforms

PCA

Board name

Build target

nRF9160 DK

PCA10090

nrf9160dk_nrf9160

nrf9160dk_nrf9160_ns

nRF7002 DK

PCA10143

nrf7002dk_nrf5340

nrf7002dk_nrf5340_cpuapp

nRF5340 DK

PCA10095

nrf5340dk_nrf5340

nrf5340dk_nrf5340_cpuapp

nRF52840 DK

PCA10056

nrf52840dk_nrf52840

nrf52840dk_nrf52840

Overview

This sample can perform all Wi-Fi operations in the 2.4GHz and 5GHz bands depending on the capabilities supported in the underlying chipset.

Using this sample, the development kit can associate with, and ping to, any Wi-Fi capable access point in STA mode.

Building and running

This sample can be found under samples/wifi/shell in the nRF Connect SDK folder structure.

When built as firmware image for the _ns build target, the sample has Cortex-M Security Extensions (CMSE) enabled and separates the firmware between Non-Secure Processing Environment (NSPE) and Secure Processing Environment (SPE). Because of this, it automatically includes the Trusted Firmware-M (TF-M). To read more about CMSE, see Processing environments.

To build the sample with Visual Studio Code, follow the steps listed on the How to build an application page in the nRF Connect for VS Code extension documentation. See Building and programming an application for other building and programming scenarios and Testing and debugging an application for general information about testing and debugging in the nRF Connect SDK.

Currently, the following configurations are supported:

  • 7002 DK + QSPI

  • 7002 EK + SPIM

  • 9160 DK + SPIM

To build for the nRF7002 DK, use the nrf7002dk_nrf5340_cpuapp build target. The following is an example of the CLI command:

west build -b nrf7002dk_nrf5340_cpuapp

To build for the nRF7002 EK, use the nrf7002dk_nrf5340_cpuapp build target with the SHIELD CMake option set to nrf7002_ek. The following is an example of the CLI command:

west build -b nrf5340dk_nrf5340_cpuapp -- -DSHIELD=nrf7002_ek

To build for the nRF9160 DK, use the nrf9160dk_nrf9160_ns build target with the SHIELD CMake option set to nrf7002_ek and scan-only overlay configuration. The following is an example of the CLI command:

west build -b nrf9160dk_nrf9160_ns -- -DOVERLAY_CONFIG=overlay-scan-only.conf -DSHIELD=nrf7002_ek

See also Providing CMake options for instructions on how to provide CMake options.

Supported CLI commands

wifi is the Wi-Fi command line and supports the following UART CLI subcommands:

Wi-Fi shell subcommands

Subcommands

Description

scan

Scan for access points in the vicinity

connect

Connect to an access point with below parameters:
<SSID>
<Channel number> (optional: 0 means all)
<Passphrase> (optional: valid only for secured SSIDs)
<KEY_MGMT> (optional: 0-None, 1-WPA2, 2-WPA2-256, 3-WPA3)
<MFP> (optional: 0-Disable, 1-Optional, 2-Required)

disconnect

Disconnect from the current access point

status

Get the status of the Wi-Fi interface

statistics

Get the statistics of the Wi-Fi interface

ap_enable

Configure the Wi-Fi interface as access point mode

ap_disable

Configure the Wi-Fi interface as station mode

ps

Configure power save
No argument - Prints current configuration
on - Turns on power save feature
off - Turns off power save feature

ps_mode

Configure Wi-Fi power save mode
0 - Legacy
1 - WMM

twt

Manage Target Wake Time (TWT) flows with below subcommands:

setup - Start a TWT flow:
<negotiation_type: 0 - Individual, 1 - Broadcast, 2 - Wake TBTT>
<setup_cmd: 0 - Request, 1 - Suggest, 2 - Demand>
<dialog_token> <flow_id> <responder> <trigger> <implicit>
<announce> <twt_wake_interval_ms> <twt_interval_ms>

teardown - Teardown a TWT flow:
<negotiation_type: 0 - Individual, 1 - Broadcast, 2 - Wake TBTT>
<setup_cmd: 0 - Request, 1 - Suggest, 2 - Demand>
<dialog_token> <flow_id>

teardown_all - Teardown all TWT flows

reg_domain

Set or get Wi-Fi regulatory domain

Usage: wifi reg_domain [ISO/IEC 3166-1 alpha2] [-f]

-f: Force to use this regulatory hint over any other regulatory hints.
(Note that this may cause regulatory compliance issues.)

wifi_cred is an extension to the Wi-Fi command line. It adds the following commands to interact with the Wi-Fi credentials library:

Wi-Fi credentials shell subcommands

Subcommands

Description

add

Add a network to the credentials storage with following parameters:
<SSID>
<Passphrase> (optional: valid only for secured SSIDs)
<BSSID> (optional)
<Band> (optional: 2.4GHz, 5GHz)
favorite (optional, makes the network higher priority in automatic connection)

delete <SSID>

Removes network from credentials storage.

list

Lists networks in credential storage.

auto_connect

Automatically connects to any stored network.

Testing

After programming the sample to your development kit, complete the following steps to test it:

  1. Connect the kit to the computer using a USB cable. The kit is assigned a COM port (Windows) or ttyACM device (Linux), which is visible in the Device Manager.

  2. Connect to the kit with a terminal emulator (for example, PuTTY). See How to connect with PuTTY for the required settings.

  3. Scan for the Wi-Fi networks in range using the following command:

    wifi scan
    

    The output should be similar to the following:

    Scan requested
    
    Num  | SSID                             (len) | Chan (Band)    | RSSI | Security        | BSSID
    1    | xyza                             4     | 1    (2.4GHz)  | -27  | WPA2-PSK        | xx:xx:xx:xx:xx:xx
    2    | abcd                             4     | 149  (5GHz  )  | -28  | WPA2-PSK        | yy:yy:yy:yy:yy:yy
    
  4. Connect to your preferred network using the following command:

    wifi connect <SSID> <passphrase>
    

    <SSID> is the SSID of the network you want to connect to, and <passphrase> is its passphrase.

  5. Check the connection status after a while, using the following command:

    wifi status
    

    If the connection is established, you should see an output similar to the following:

    Status: successful
    ==================
    State: COMPLETED
    Interface Mode: STATION
    Link Mode: WIFI 6 (802.11ax/HE)
    SSID: OpenWrt
    BSSID: C0:06:C3:1D:CF:9E
    Band: 5GHz
    Channel: 157
    Security: WPA2-PSK
    PMF: Optional
    RSSI: 0
    
  6. Initiate a ping and verify data connectivity using the following commands:

    net dns <hostname>
    net ping <resolved hostname>
    

    See the following example:

    net dns google.com
     Query for 'google.com' sent.
     dns: 142.250.74.46
     dns: All results received
    
    net ping 10 142.250.74.46
     PING 142.250.74.46
     28 bytes from 142.250.74.46 to 192.168.50.199: icmp_seq=0 ttl=113 time=191 ms
     28 bytes from 142.250.74.46 to 192.168.50.199: icmp_seq=1 ttl=113 time=190 ms
     28 bytes from 142.250.74.46 to 192.168.50.199: icmp_seq=2 ttl=113 time=190 ms
    

Dependencies

This sample uses the following sdk-nrfxlib library:

This sample also uses modules that can be found in the following locations in the nRF Connect SDK folder structure:

  • modules/lib/hostap

  • modules/mbedtls