Zephyr API Documentation  3.6.99
A Scalable Open Source RTOS
Loading...
Searching...
No Matches
sensor.h
Go to the documentation of this file.
1
7/*
8 * Copyright (c) 2016 Intel Corporation
9 *
10 * SPDX-License-Identifier: Apache-2.0
11 */
12#ifndef ZEPHYR_INCLUDE_DRIVERS_SENSOR_H_
13#define ZEPHYR_INCLUDE_DRIVERS_SENSOR_H_
14
24#include <errno.h>
25#include <stdlib.h>
26
27#include <zephyr/device.h>
29#include <zephyr/dsp/types.h>
30#include <zephyr/rtio/rtio.h>
32#include <zephyr/types.h>
33
34#ifdef __cplusplus
35extern "C" {
36#endif
37
56};
57
111
120
129
132
135
140
143
146
153
156
193
196
201
207
212};
213
243
246
249
252
255
258
261
268
274
279};
280
289};
290
311 /* Hysteresis for trigger thresholds. */
341
344
349
355
360};
361
369typedef void (*sensor_trigger_handler_t)(const struct device *dev,
370 const struct sensor_trigger *trigger);
371
378typedef int (*sensor_attr_set_t)(const struct device *dev,
379 enum sensor_channel chan,
380 enum sensor_attribute attr,
381 const struct sensor_value *val);
382
389typedef int (*sensor_attr_get_t)(const struct device *dev,
390 enum sensor_channel chan,
391 enum sensor_attribute attr,
392 struct sensor_value *val);
393
400typedef int (*sensor_trigger_set_t)(const struct device *dev,
401 const struct sensor_trigger *trig,
409typedef int (*sensor_sample_fetch_t)(const struct device *dev,
410 enum sensor_channel chan);
417typedef int (*sensor_channel_get_t)(const struct device *dev,
418 enum sensor_channel chan,
419 struct sensor_value *val);
420
432};
433
435/* Ensure sensor_chan_spec is sensibly sized to pass by value */
436BUILD_ASSERT(sizeof(struct sensor_chan_spec) <= sizeof(uintptr_t),
437 "sensor_chan_spec size should be equal or less than the size of a machine word");
448static inline bool sensor_chan_spec_eq(struct sensor_chan_spec chan_spec0,
449 struct sensor_chan_spec chan_spec1)
450{
451 return chan_spec0.chan_type == chan_spec1.chan_type &&
452 chan_spec0.chan_idx == chan_spec1.chan_idx;
453}
454
471 int (*get_frame_count)(const uint8_t *buffer, struct sensor_chan_spec channel,
472 uint16_t *frame_count);
473
486 int (*get_size_info)(struct sensor_chan_spec channel, size_t *base_size,
487 size_t *frame_size);
488
514 int (*decode)(const uint8_t *buffer, struct sensor_chan_spec channel, uint32_t *fit,
515 uint16_t max_count, void *data_out);
516
524 bool (*has_trigger)(const uint8_t *buffer, enum sensor_trigger_type trigger);
525};
526
556};
557
561#define SENSOR_DECODE_CONTEXT_INIT(decoder_, buffer_, channel_type_, channel_index_) \
562 { \
563 .decoder = (decoder_), \
564 .buffer = (buffer_), \
565 .channel = {.chan_type = (channel_type_), .chan_idx = (channel_index_)}, \
566 .fit = 0, \
567 }
568
577static inline int sensor_decode(struct sensor_decode_context *ctx, void *out, uint16_t max_count)
578{
579 return ctx->decoder->decode(ctx->buffer, ctx->channel, &ctx->fit, max_count, out);
580}
581
583 size_t *frame_size);
584
591typedef int (*sensor_get_decoder_t)(const struct device *dev,
592 const struct sensor_decoder_api **api);
593
604};
605
609};
610
611#define SENSOR_STREAM_TRIGGER_PREP(_trigger, _opt) \
612 { \
613 .trigger = (_trigger), .opt = (_opt), \
614 }
615
616/*
617 * Internal data structure used to store information about the IODevice for async reading and
618 * streaming sensor data.
619 */
621 const struct device *sensor;
622 const bool is_streaming;
623 union {
626 };
627 size_t count;
628 const size_t max;
629};
630
646#define SENSOR_DT_READ_IODEV(name, dt_node, ...) \
647 static struct sensor_chan_spec _CONCAT(__channel_array_, name)[] = {__VA_ARGS__}; \
648 static struct sensor_read_config _CONCAT(__sensor_read_config_, name) = { \
649 .sensor = DEVICE_DT_GET(dt_node), \
650 .is_streaming = false, \
651 .channels = _CONCAT(__channel_array_, name), \
652 .count = ARRAY_SIZE(_CONCAT(__channel_array_, name)), \
653 .max = ARRAY_SIZE(_CONCAT(__channel_array_, name)), \
654 }; \
655 RTIO_IODEV_DEFINE(name, &__sensor_iodev_api, _CONCAT(&__sensor_read_config_, name))
656
676#define SENSOR_DT_STREAM_IODEV(name, dt_node, ...) \
677 static struct sensor_stream_trigger _CONCAT(__trigger_array_, name)[] = {__VA_ARGS__}; \
678 static struct sensor_read_config _CONCAT(__sensor_read_config_, name) = { \
679 .sensor = DEVICE_DT_GET(dt_node), \
680 .is_streaming = true, \
681 .triggers = _CONCAT(__trigger_array_, name), \
682 .count = ARRAY_SIZE(_CONCAT(__trigger_array_, name)), \
683 .max = ARRAY_SIZE(_CONCAT(__trigger_array_, name)), \
684 }; \
685 RTIO_IODEV_DEFINE(name, &__sensor_iodev_api, &_CONCAT(__sensor_read_config_, name))
686
687/* Used to submit an RTIO sqe to the sensor's iodev */
688typedef int (*sensor_submit_t)(const struct device *sensor, struct rtio_iodev_sqe *sqe);
689
690/* The default decoder API */
691extern const struct sensor_decoder_api __sensor_default_decoder;
692
693/* The default sensor iodev API */
694extern const struct rtio_iodev_api __sensor_iodev_api;
695
696__subsystem struct sensor_driver_api {
704};
705
718__syscall int sensor_attr_set(const struct device *dev,
719 enum sensor_channel chan,
720 enum sensor_attribute attr,
721 const struct sensor_value *val);
722
723static inline int z_impl_sensor_attr_set(const struct device *dev,
724 enum sensor_channel chan,
725 enum sensor_attribute attr,
726 const struct sensor_value *val)
727{
728 const struct sensor_driver_api *api =
729 (const struct sensor_driver_api *)dev->api;
730
731 if (api->attr_set == NULL) {
732 return -ENOSYS;
733 }
734
735 return api->attr_set(dev, chan, attr, val);
736}
737
750__syscall int sensor_attr_get(const struct device *dev,
751 enum sensor_channel chan,
752 enum sensor_attribute attr,
753 struct sensor_value *val);
754
755static inline int z_impl_sensor_attr_get(const struct device *dev,
756 enum sensor_channel chan,
757 enum sensor_attribute attr,
758 struct sensor_value *val)
759{
760 const struct sensor_driver_api *api =
761 (const struct sensor_driver_api *)dev->api;
762
763 if (api->attr_get == NULL) {
764 return -ENOSYS;
765 }
766
767 return api->attr_get(dev, chan, attr, val);
768}
769
792static inline int sensor_trigger_set(const struct device *dev,
793 const struct sensor_trigger *trig,
795{
796 const struct sensor_driver_api *api =
797 (const struct sensor_driver_api *)dev->api;
798
799 if (api->trigger_set == NULL) {
800 return -ENOSYS;
801 }
802
803 return api->trigger_set(dev, trig, handler);
804}
805
824__syscall int sensor_sample_fetch(const struct device *dev);
825
826static inline int z_impl_sensor_sample_fetch(const struct device *dev)
827{
828 const struct sensor_driver_api *api =
829 (const struct sensor_driver_api *)dev->api;
830
831 return api->sample_fetch(dev, SENSOR_CHAN_ALL);
832}
833
855__syscall int sensor_sample_fetch_chan(const struct device *dev,
856 enum sensor_channel type);
857
858static inline int z_impl_sensor_sample_fetch_chan(const struct device *dev,
859 enum sensor_channel type)
860{
861 const struct sensor_driver_api *api =
862 (const struct sensor_driver_api *)dev->api;
863
864 return api->sample_fetch(dev, type);
865}
866
888__syscall int sensor_channel_get(const struct device *dev,
889 enum sensor_channel chan,
890 struct sensor_value *val);
891
892static inline int z_impl_sensor_channel_get(const struct device *dev,
893 enum sensor_channel chan,
894 struct sensor_value *val)
895{
896 const struct sensor_driver_api *api =
897 (const struct sensor_driver_api *)dev->api;
898
899 return api->channel_get(dev, chan, val);
900}
901
902#if defined(CONFIG_SENSOR_ASYNC_API) || defined(__DOXYGEN__)
903
904/*
905 * Generic data structure used for encoding the sample timestamp and number of channels sampled.
906 */
907struct __attribute__((__packed__)) sensor_data_generic_header {
908 /* The timestamp at which the data was collected from the sensor */
910
911 /*
912 * The number of channels present in the frame. This will be the true number of elements in
913 * channel_info and in the q31 values that follow the header.
914 */
916
917 /* Shift value for all samples in the frame */
919
920 /* This padding is needed to make sure that the 'channels' field is aligned */
921 int8_t _padding[sizeof(struct sensor_chan_spec) - 1];
922
923 /* Channels present in the frame */
924 struct sensor_chan_spec channels[0];
925};
926
935#define SENSOR_CHANNEL_3_AXIS(chan) \
936 ((chan) == SENSOR_CHAN_ACCEL_XYZ || (chan) == SENSOR_CHAN_GYRO_XYZ || \
937 (chan) == SENSOR_CHAN_MAGN_XYZ)
938
947__syscall int sensor_get_decoder(const struct device *dev,
948 const struct sensor_decoder_api **decoder);
949
950static inline int z_impl_sensor_get_decoder(const struct device *dev,
951 const struct sensor_decoder_api **decoder)
952{
953 const struct sensor_driver_api *api = (const struct sensor_driver_api *)dev->api;
954
955 __ASSERT_NO_MSG(api != NULL);
956
957 if (api->get_decoder == NULL) {
958 *decoder = &__sensor_default_decoder;
959 return 0;
960 }
961
962 return api->get_decoder(dev, decoder);
963}
964
983__syscall int sensor_reconfigure_read_iodev(struct rtio_iodev *iodev, const struct device *sensor,
984 const struct sensor_chan_spec *channels,
985 size_t num_channels);
986
987static inline int z_impl_sensor_reconfigure_read_iodev(struct rtio_iodev *iodev,
988 const struct device *sensor,
989 const struct sensor_chan_spec *channels,
990 size_t num_channels)
991{
992 struct sensor_read_config *cfg = (struct sensor_read_config *)iodev->data;
993
994 if (cfg->max < num_channels || cfg->is_streaming) {
995 return -ENOMEM;
996 }
997
998 cfg->sensor = sensor;
999 memcpy(cfg->channels, channels, num_channels * sizeof(struct sensor_chan_spec));
1000 cfg->count = num_channels;
1001 return 0;
1002}
1003
1004static inline int sensor_stream(struct rtio_iodev *iodev, struct rtio *ctx, void *userdata,
1005 struct rtio_sqe **handle)
1006{
1007 if (IS_ENABLED(CONFIG_USERSPACE)) {
1008 struct rtio_sqe sqe;
1009
1011 rtio_sqe_copy_in_get_handles(ctx, &sqe, handle, 1);
1012 } else {
1013 struct rtio_sqe *sqe = rtio_sqe_acquire(ctx);
1014
1015 if (sqe == NULL) {
1016 return -ENOMEM;
1017 }
1018 if (handle != NULL) {
1019 *handle = sqe;
1020 }
1022 }
1023 rtio_submit(ctx, 0);
1024 return 0;
1025}
1026
1040static inline int sensor_read(struct rtio_iodev *iodev, struct rtio *ctx, void *userdata)
1041{
1042 if (IS_ENABLED(CONFIG_USERSPACE)) {
1043 struct rtio_sqe sqe;
1044
1046 rtio_sqe_copy_in(ctx, &sqe, 1);
1047 } else {
1048 struct rtio_sqe *sqe = rtio_sqe_acquire(ctx);
1049
1050 if (sqe == NULL) {
1051 return -ENOMEM;
1052 }
1054 }
1055 rtio_submit(ctx, 0);
1056 return 0;
1057}
1058
1071 void *userdata);
1072
1085
1086#endif /* defined(CONFIG_SENSOR_ASYNC_API) || defined(__DOXYGEN__) */
1087
1091#define SENSOR_G 9806650LL
1092
1096#define SENSOR_PI 3141592LL
1097
1106static inline int32_t sensor_ms2_to_g(const struct sensor_value *ms2)
1107{
1108 int64_t micro_ms2 = ms2->val1 * 1000000LL + ms2->val2;
1109
1110 if (micro_ms2 > 0) {
1111 return (micro_ms2 + SENSOR_G / 2) / SENSOR_G;
1112 } else {
1113 return (micro_ms2 - SENSOR_G / 2) / SENSOR_G;
1114 }
1115}
1116
1123static inline void sensor_g_to_ms2(int32_t g, struct sensor_value *ms2)
1124{
1125 ms2->val1 = ((int64_t)g * SENSOR_G) / 1000000LL;
1126 ms2->val2 = ((int64_t)g * SENSOR_G) % 1000000LL;
1127}
1128
1137static inline int32_t sensor_ms2_to_ug(const struct sensor_value *ms2)
1138{
1139 int64_t micro_ms2 = (ms2->val1 * INT64_C(1000000)) + ms2->val2;
1140
1141 return (micro_ms2 * 1000000LL) / SENSOR_G;
1142}
1143
1150static inline void sensor_ug_to_ms2(int32_t ug, struct sensor_value *ms2)
1151{
1152 ms2->val1 = ((int64_t)ug * SENSOR_G / 1000000LL) / 1000000LL;
1153 ms2->val2 = ((int64_t)ug * SENSOR_G / 1000000LL) % 1000000LL;
1154}
1155
1163static inline int32_t sensor_rad_to_degrees(const struct sensor_value *rad)
1164{
1165 int64_t micro_rad_s = rad->val1 * 1000000LL + rad->val2;
1166
1167 if (micro_rad_s > 0) {
1168 return (micro_rad_s * 180LL + SENSOR_PI / 2) / SENSOR_PI;
1169 } else {
1170 return (micro_rad_s * 180LL - SENSOR_PI / 2) / SENSOR_PI;
1171 }
1172}
1173
1180static inline void sensor_degrees_to_rad(int32_t d, struct sensor_value *rad)
1181{
1182 rad->val1 = ((int64_t)d * SENSOR_PI / 180LL) / 1000000LL;
1183 rad->val2 = ((int64_t)d * SENSOR_PI / 180LL) % 1000000LL;
1184}
1185
1197static inline int32_t sensor_rad_to_10udegrees(const struct sensor_value *rad)
1198{
1199 int64_t micro_rad_s = rad->val1 * 1000000LL + rad->val2;
1200
1201 return (micro_rad_s * 180LL * 100000LL) / SENSOR_PI;
1202}
1203
1210static inline void sensor_10udegrees_to_rad(int32_t d, struct sensor_value *rad)
1211{
1212 rad->val1 = ((int64_t)d * SENSOR_PI / 180LL / 100000LL) / 1000000LL;
1213 rad->val2 = ((int64_t)d * SENSOR_PI / 180LL / 100000LL) % 1000000LL;
1214}
1215
1222static inline double sensor_value_to_double(const struct sensor_value *val)
1223{
1224 return (double)val->val1 + (double)val->val2 / 1000000;
1225}
1226
1233static inline float sensor_value_to_float(const struct sensor_value *val)
1234{
1235 return (float)val->val1 + (float)val->val2 / 1000000;
1236}
1237
1245static inline int sensor_value_from_double(struct sensor_value *val, double inp)
1246{
1247 if (inp < INT32_MIN || inp > INT32_MAX) {
1248 return -ERANGE;
1249 }
1250
1251 double val2 = (inp - (int32_t)inp) * 1000000.0;
1252
1253 if (val2 < INT32_MIN || val2 > INT32_MAX) {
1254 return -ERANGE;
1255 }
1256
1257 val->val1 = (int32_t)inp;
1258 val->val2 = (int32_t)val2;
1259
1260 return 0;
1261}
1262
1270static inline int sensor_value_from_float(struct sensor_value *val, float inp)
1271{
1272 float val2 = (inp - (int32_t)inp) * 1000000.0f;
1273
1274 if (val2 < INT32_MIN || val2 > (float)(INT32_MAX - 1)) {
1275 return -ERANGE;
1276 }
1277
1278 val->val1 = (int32_t)inp;
1279 val->val2 = (int32_t)val2;
1280
1281 return 0;
1282}
1283
1284#ifdef CONFIG_SENSOR_INFO
1285
1286struct sensor_info {
1287 const struct device *dev;
1288 const char *vendor;
1289 const char *model;
1290 const char *friendly_name;
1291};
1292
1293#define SENSOR_INFO_INITIALIZER(_dev, _vendor, _model, _friendly_name) \
1294 { \
1295 .dev = _dev, \
1296 .vendor = _vendor, \
1297 .model = _model, \
1298 .friendly_name = _friendly_name, \
1299 }
1300
1301#define SENSOR_INFO_DEFINE(name, ...) \
1302 static const STRUCT_SECTION_ITERABLE(sensor_info, name) = \
1303 SENSOR_INFO_INITIALIZER(__VA_ARGS__)
1304
1305#define SENSOR_INFO_DT_NAME(node_id) \
1306 _CONCAT(__sensor_info, DEVICE_DT_NAME_GET(node_id))
1307
1308#define SENSOR_INFO_DT_DEFINE(node_id) \
1309 SENSOR_INFO_DEFINE(SENSOR_INFO_DT_NAME(node_id), \
1310 DEVICE_DT_GET(node_id), \
1311 DT_NODE_VENDOR_OR(node_id, NULL), \
1312 DT_NODE_MODEL_OR(node_id, NULL), \
1313 DT_PROP_OR(node_id, friendly_name, NULL)) \
1314
1315#else
1316
1317#define SENSOR_INFO_DEFINE(name, ...)
1318#define SENSOR_INFO_DT_DEFINE(node_id)
1319
1320#endif /* CONFIG_SENSOR_INFO */
1321
1349#define SENSOR_DEVICE_DT_DEFINE(node_id, init_fn, pm_device, \
1350 data_ptr, cfg_ptr, level, prio, \
1351 api_ptr, ...) \
1352 DEVICE_DT_DEFINE(node_id, init_fn, pm_device, \
1353 data_ptr, cfg_ptr, level, prio, \
1354 api_ptr, __VA_ARGS__); \
1355 \
1356 SENSOR_INFO_DT_DEFINE(node_id);
1357
1367#define SENSOR_DEVICE_DT_INST_DEFINE(inst, ...) \
1368 SENSOR_DEVICE_DT_DEFINE(DT_DRV_INST(inst), __VA_ARGS__)
1369
1376static inline int64_t sensor_value_to_milli(const struct sensor_value *val)
1377{
1378 return ((int64_t)val->val1 * 1000) + val->val2 / 1000;
1379}
1380
1387static inline int64_t sensor_value_to_micro(const struct sensor_value *val)
1388{
1389 return ((int64_t)val->val1 * 1000000) + val->val2;
1390}
1391
1399static inline int sensor_value_from_milli(struct sensor_value *val, int64_t milli)
1400{
1401 if (milli < ((int64_t)INT32_MIN - 1) * 1000LL ||
1402 milli > ((int64_t)INT32_MAX + 1) * 1000LL) {
1403 return -ERANGE;
1404 }
1405
1406 val->val1 = (int32_t)(milli / 1000);
1407 val->val2 = (int32_t)(milli % 1000) * 1000;
1408
1409 return 0;
1410}
1411
1419static inline int sensor_value_from_micro(struct sensor_value *val, int64_t micro)
1420{
1421 if (micro < ((int64_t)INT32_MIN - 1) * 1000000LL ||
1422 micro > ((int64_t)INT32_MAX + 1) * 1000000LL) {
1423 return -ERANGE;
1424 }
1425
1426 val->val1 = (int32_t)(micro / 1000000LL);
1427 val->val2 = (int32_t)(micro % 1000000LL);
1428
1429 return 0;
1430}
1431
1441#define SENSOR_DECODER_NAME() UTIL_CAT(DT_DRV_COMPAT, __decoder_api)
1442
1450#define SENSOR_DECODER_DT_GET(node_id) \
1451 &UTIL_CAT(DT_STRING_TOKEN_BY_IDX(node_id, compatible, 0), __decoder_api)
1452
1468#define SENSOR_DECODER_API_DT_DEFINE() \
1469 COND_CODE_1(DT_HAS_COMPAT_STATUS_OKAY(DT_DRV_COMPAT), (), (static)) \
1470 const STRUCT_SECTION_ITERABLE(sensor_decoder_api, SENSOR_DECODER_NAME())
1471
1472#define Z_MAYBE_SENSOR_DECODER_DECLARE_INTERNAL_IDX(node_id, prop, idx) \
1473 extern const struct sensor_decoder_api UTIL_CAT( \
1474 DT_STRING_TOKEN_BY_IDX(node_id, prop, idx), __decoder_api);
1475
1476#define Z_MAYBE_SENSOR_DECODER_DECLARE_INTERNAL(node_id) \
1477 COND_CODE_1(DT_NODE_HAS_PROP(node_id, compatible), \
1478 (DT_FOREACH_PROP_ELEM(node_id, compatible, \
1479 Z_MAYBE_SENSOR_DECODER_DECLARE_INTERNAL_IDX)), \
1480 ())
1481
1482DT_FOREACH_STATUS_OKAY_NODE(Z_MAYBE_SENSOR_DECODER_DECLARE_INTERNAL)
1483
1484#ifdef __cplusplus
1485}
1486#endif
1487
1488#include <syscalls/sensor.h>
1489
1490#endif /* ZEPHYR_INCLUDE_DRIVERS_SENSOR_H_ */
irp nz macro MOVR cc d
Definition: asm-macro-32-bit-gnu.h:11
System error numbers.
#define DT_FOREACH_STATUS_OKAY_NODE(fn)
Invokes fn for every status okay node in the tree.
Definition: devicetree.h:2693
#define RTIO_PRIO_NORM
Normal priority.
Definition: rtio.h:70
static void rtio_sqe_prep_read_with_pool(struct rtio_sqe *sqe, const struct rtio_iodev *iodev, int8_t prio, void *userdata)
Prepare a read op submission with context's mempool.
Definition: rtio.h:520
static int rtio_sqe_copy_in(struct rtio *r, const struct rtio_sqe *sqes, size_t sqe_count)
Copy an array of SQEs into the queue.
Definition: rtio.h:1369
int rtio_sqe_copy_in_get_handles(struct rtio *r, const struct rtio_sqe *sqes, struct rtio_sqe **handle, size_t sqe_count)
Copy an array of SQEs into the queue and get resulting handles back.
static struct rtio_sqe * rtio_sqe_acquire(struct rtio *r)
Acquire a single submission queue event if available.
Definition: rtio.h:905
static void rtio_sqe_prep_read_multishot(struct rtio_sqe *sqe, const struct rtio_iodev *iodev, int8_t prio, void *userdata)
Definition: rtio.h:528
int rtio_submit(struct rtio *r, uint32_t wait_count)
Submit I/O requests to the underlying executor.
#define SENSOR_G
The value of gravitational constant in micro m/s^2.
Definition: sensor.h:1091
static int sensor_decode(struct sensor_decode_context *ctx, void *out, uint16_t max_count)
Decode N frames using a sensor_decode_context.
Definition: sensor.h:577
static int32_t sensor_rad_to_degrees(const struct sensor_value *rad)
Helper function for converting radians to degrees.
Definition: sensor.h:1163
sensor_trigger_type
Sensor trigger types.
Definition: sensor.h:217
sensor_attribute
Sensor attribute types.
Definition: sensor.h:294
int(* sensor_attr_set_t)(const struct device *dev, enum sensor_channel chan, enum sensor_attribute attr, const struct sensor_value *val)
Callback API upon setting a sensor's attributes.
Definition: sensor.h:378
int sensor_get_decoder(const struct device *dev, const struct sensor_decoder_api **decoder)
Get the sensor's decoder API.
int(* sensor_sample_fetch_t)(const struct device *dev, enum sensor_channel chan)
Callback API for fetching data from a sensor.
Definition: sensor.h:409
static void sensor_ug_to_ms2(int32_t ug, struct sensor_value *ms2)
Helper function to convert acceleration from micro Gs to m/s^2.
Definition: sensor.h:1150
static double sensor_value_to_double(const struct sensor_value *val)
Helper function for converting struct sensor_value to double.
Definition: sensor.h:1222
static float sensor_value_to_float(const struct sensor_value *val)
Helper function for converting struct sensor_value to float.
Definition: sensor.h:1233
int sensor_natively_supported_channel_size_info(struct sensor_chan_spec channel, size_t *base_size, size_t *frame_size)
static int sensor_read(struct rtio_iodev *iodev, struct rtio *ctx, void *userdata)
Read data from a sensor.
Definition: sensor.h:1040
static void sensor_degrees_to_rad(int32_t d, struct sensor_value *rad)
Helper function for converting degrees to radians.
Definition: sensor.h:1180
static int32_t sensor_ms2_to_ug(const struct sensor_value *ms2)
Helper function to convert acceleration from m/s^2 to micro Gs.
Definition: sensor.h:1137
int(* sensor_attr_get_t)(const struct device *dev, enum sensor_channel chan, enum sensor_attribute attr, struct sensor_value *val)
Callback API upon getting a sensor's attributes.
Definition: sensor.h:389
static int sensor_value_from_float(struct sensor_value *val, float inp)
Helper function for converting float to struct sensor_value.
Definition: sensor.h:1270
void(* sensor_trigger_handler_t)(const struct device *dev, const struct sensor_trigger *trigger)
Callback API upon firing of a trigger.
Definition: sensor.h:369
static void sensor_g_to_ms2(int32_t g, struct sensor_value *ms2)
Helper function to convert acceleration from Gs to m/s^2.
Definition: sensor.h:1123
static int64_t sensor_value_to_milli(const struct sensor_value *val)
Helper function for converting struct sensor_value to integer milli units.
Definition: sensor.h:1376
#define SENSOR_PI
The value of constant PI in micros.
Definition: sensor.h:1096
static int sensor_trigger_set(const struct device *dev, const struct sensor_trigger *trig, sensor_trigger_handler_t handler)
Activate a sensor's trigger and set the trigger handler.
Definition: sensor.h:792
sensor_stream_data_opt
Options for what to do with the associated data when a trigger is consumed.
Definition: sensor.h:597
static int sensor_value_from_milli(struct sensor_value *val, int64_t milli)
Helper function for converting integer milli units to struct sensor_value.
Definition: sensor.h:1399
void(* sensor_processing_callback_t)(int result, uint8_t *buf, uint32_t buf_len, void *userdata)
Callback function used with the helper processing function.
Definition: sensor.h:1070
static int64_t sensor_value_to_micro(const struct sensor_value *val)
Helper function for converting struct sensor_value to integer micro units.
Definition: sensor.h:1387
int sensor_channel_get(const struct device *dev, enum sensor_channel chan, struct sensor_value *val)
Get a reading from a sensor device.
int sensor_sample_fetch(const struct device *dev)
Fetch a sample from the sensor and store it in an internal driver buffer.
sensor_channel
Sensor channels.
Definition: sensor.h:61
int(* sensor_get_decoder_t)(const struct device *dev, const struct sensor_decoder_api **api)
Get the decoder associate with the given device.
Definition: sensor.h:591
static void sensor_10udegrees_to_rad(int32_t d, struct sensor_value *rad)
Helper function for converting 10 micro degrees to radians.
Definition: sensor.h:1210
int(* sensor_channel_get_t)(const struct device *dev, enum sensor_channel chan, struct sensor_value *val)
Callback API for getting a reading from a sensor.
Definition: sensor.h:417
static int32_t sensor_ms2_to_g(const struct sensor_value *ms2)
Helper function to convert acceleration from m/s^2 to Gs.
Definition: sensor.h:1106
int sensor_reconfigure_read_iodev(struct rtio_iodev *iodev, const struct device *sensor, const struct sensor_chan_spec *channels, size_t num_channels)
Reconfigure a reading iodev.
int(* sensor_submit_t)(const struct device *sensor, struct rtio_iodev_sqe *sqe)
Definition: sensor.h:688
void sensor_processing_with_callback(struct rtio *ctx, sensor_processing_callback_t cb)
Helper function for common processing of sensor data.
int(* sensor_trigger_set_t)(const struct device *dev, const struct sensor_trigger *trig, sensor_trigger_handler_t handler)
Callback API for setting a sensor's trigger and handler.
Definition: sensor.h:400
static int sensor_value_from_micro(struct sensor_value *val, int64_t micro)
Helper function for converting integer micro units to struct sensor_value.
Definition: sensor.h:1419
int sensor_sample_fetch_chan(const struct device *dev, enum sensor_channel type)
Fetch a sample from the sensor and store it in an internal driver buffer.
static int sensor_stream(struct rtio_iodev *iodev, struct rtio *ctx, void *userdata, struct rtio_sqe **handle)
Definition: sensor.h:1004
static int32_t sensor_rad_to_10udegrees(const struct sensor_value *rad)
Helper function for converting radians to 10 micro degrees.
Definition: sensor.h:1197
static bool sensor_chan_spec_eq(struct sensor_chan_spec chan_spec0, struct sensor_chan_spec chan_spec1)
Check if channel specs are equivalent.
Definition: sensor.h:448
int sensor_attr_get(const struct device *dev, enum sensor_channel chan, enum sensor_attribute attr, struct sensor_value *val)
Get an attribute for a sensor.
static int sensor_value_from_double(struct sensor_value *val, double inp)
Helper function for converting double to struct sensor_value.
Definition: sensor.h:1245
int sensor_attr_set(const struct device *dev, enum sensor_channel chan, enum sensor_attribute attr, const struct sensor_value *val)
Set an attribute for a sensor.
@ SENSOR_TRIG_DELTA
Trigger fires when the selected channel varies significantly.
Definition: sensor.h:233
@ SENSOR_TRIG_NEAR_FAR
Trigger fires when a near/far event is detected.
Definition: sensor.h:235
@ SENSOR_TRIG_FREEFALL
Trigger fires when a free fall is detected.
Definition: sensor.h:251
@ SENSOR_TRIG_PRIV_START
This and higher values are sensor specific.
Definition: sensor.h:273
@ SENSOR_TRIG_FIFO_FULL
Trigger fires when the FIFO becomes full.
Definition: sensor.h:263
@ SENSOR_TRIG_MOTION
Trigger fires when motion is detected.
Definition: sensor.h:254
@ SENSOR_TRIG_STATIONARY
Trigger fires when no motion has been detected for a while.
Definition: sensor.h:257
@ SENSOR_TRIG_COMMON_COUNT
Number of all common sensor triggers.
Definition: sensor.h:267
@ SENSOR_TRIG_THRESHOLD
Trigger fires when channel reading transitions configured thresholds.
Definition: sensor.h:242
@ SENSOR_TRIG_MAX
Maximum value describing a sensor trigger type.
Definition: sensor.h:278
@ SENSOR_TRIG_DOUBLE_TAP
Trigger fires when a double tap is detected.
Definition: sensor.h:248
@ SENSOR_TRIG_TIMER
Timer-based trigger, useful when the sensor does not have an interrupt line.
Definition: sensor.h:222
@ SENSOR_TRIG_FIFO_WATERMARK
Trigger fires when the FIFO watermark has been reached.
Definition: sensor.h:260
@ SENSOR_TRIG_TAP
Trigger fires when a single tap is detected.
Definition: sensor.h:245
@ SENSOR_TRIG_DATA_READY
Trigger fires whenever new data is ready.
Definition: sensor.h:224
@ SENSOR_ATTR_HYSTERESIS
Definition: sensor.h:312
@ SENSOR_ATTR_FEATURE_MASK
Enable/disable sensor features.
Definition: sensor.h:332
@ SENSOR_ATTR_CALIB_TARGET
Calibration target.
Definition: sensor.h:326
@ SENSOR_ATTR_OFFSET
The sensor value returned will be altered by the amount indicated by offset: final_value = sensor_val...
Definition: sensor.h:321
@ SENSOR_ATTR_BATCH_DURATION
Hardware batch duration in ticks.
Definition: sensor.h:343
@ SENSOR_ATTR_OVERSAMPLING
Oversampling factor.
Definition: sensor.h:314
@ SENSOR_ATTR_FF_DUR
Free-fall duration represented in milliseconds.
Definition: sensor.h:340
@ SENSOR_ATTR_UPPER_THRESH
Upper threshold for trigger.
Definition: sensor.h:303
@ SENSOR_ATTR_CONFIGURATION
Configure the operating modes of a sensor.
Definition: sensor.h:328
@ SENSOR_ATTR_CALIBRATION
Set a calibration value needed by a sensor.
Definition: sensor.h:330
@ SENSOR_ATTR_COMMON_COUNT
Number of all common sensor attributes.
Definition: sensor.h:348
@ SENSOR_ATTR_ALERT
Alert threshold or alert enable/disable.
Definition: sensor.h:334
@ SENSOR_ATTR_SLOPE_TH
Threshold for any-motion (slope) trigger.
Definition: sensor.h:305
@ SENSOR_ATTR_SAMPLING_FREQUENCY
Sensor sampling frequency, i.e.
Definition: sensor.h:299
@ SENSOR_ATTR_FULL_SCALE
Sensor range, in SI units.
Definition: sensor.h:316
@ SENSOR_ATTR_LOWER_THRESH
Lower threshold for trigger.
Definition: sensor.h:301
@ SENSOR_ATTR_SLOPE_DUR
Duration for which the slope values needs to be outside the threshold for the trigger to fire.
Definition: sensor.h:310
@ SENSOR_ATTR_MAX
Maximum value describing a sensor attribute type.
Definition: sensor.h:359
@ SENSOR_ATTR_PRIV_START
This and higher values are sensor specific.
Definition: sensor.h:354
@ SENSOR_STREAM_DATA_INCLUDE
Include whatever data is associated with the trigger.
Definition: sensor.h:599
@ SENSOR_STREAM_DATA_NOP
Do nothing with the associated trigger data, it may be consumed later.
Definition: sensor.h:601
@ SENSOR_STREAM_DATA_DROP
Flush/clear whatever data is associated with the trigger.
Definition: sensor.h:603
@ SENSOR_CHAN_GAUGE_STATE_OF_HEALTH
State of health measurement in %.
Definition: sensor.h:180
@ SENSOR_CHAN_PM_1_0
1.0 micro-meters Particulate Matter, in ug/m^3
Definition: sensor.h:113
@ SENSOR_CHAN_DIE_TEMP
Device die temperature in degrees Celsius.
Definition: sensor.h:87
@ SENSOR_CHAN_PRESS
Pressure in kilopascal.
Definition: sensor.h:91
@ SENSOR_CHAN_GAUGE_TIME_TO_FULL
Time to full in minutes.
Definition: sensor.h:184
@ SENSOR_CHAN_ACCEL_XYZ
Acceleration on the X, Y and Z axes.
Definition: sensor.h:69
@ SENSOR_CHAN_MAGN_X
Magnetic field on the X axis, in Gauss.
Definition: sensor.h:79
@ SENSOR_CHAN_O2
O2 level, in parts per million (ppm)
Definition: sensor.h:124
@ SENSOR_CHAN_CURRENT
Current, in amps.
Definition: sensor.h:137
@ SENSOR_CHAN_GYRO_XYZ
Angular velocity around the X, Y and Z axes.
Definition: sensor.h:77
@ SENSOR_CHAN_VSHUNT
Current Shunt Voltage in milli-volts.
Definition: sensor.h:134
@ SENSOR_CHAN_GREEN
Illuminance in green spectrum, in lux.
Definition: sensor.h:106
@ SENSOR_CHAN_MAGN_Z
Magnetic field on the Z axis, in Gauss.
Definition: sensor.h:83
@ SENSOR_CHAN_MAGN_Y
Magnetic field on the Y axis, in Gauss.
Definition: sensor.h:81
@ SENSOR_CHAN_GAUGE_DESIRED_VOLTAGE
Desired voltage of cell in V (nominal voltage)
Definition: sensor.h:190
@ SENSOR_CHAN_POWER
Power in watts.
Definition: sensor.h:139
@ SENSOR_CHAN_PM_2_5
2.5 micro-meters Particulate Matter, in ug/m^3
Definition: sensor.h:115
@ SENSOR_CHAN_RESISTANCE
Resistance , in Ohm.
Definition: sensor.h:142
@ SENSOR_CHAN_GAUGE_AVG_CURRENT
Average current, in amps.
Definition: sensor.h:160
@ SENSOR_CHAN_GYRO_Y
Angular velocity around the Y axis, in radians/s.
Definition: sensor.h:73
@ SENSOR_CHAN_GAUGE_DESIRED_CHARGING_CURRENT
Desired charging current in mA.
Definition: sensor.h:192
@ SENSOR_CHAN_GAUGE_FULL_CHARGE_CAPACITY
Full Charge Capacity in mAh.
Definition: sensor.h:170
@ SENSOR_CHAN_ROTATION
Angular rotation, in degrees.
Definition: sensor.h:145
@ SENSOR_CHAN_AMBIENT_TEMP
Ambient temperature in degrees Celsius.
Definition: sensor.h:89
@ SENSOR_CHAN_MAGN_XYZ
Magnetic field on the X, Y and Z axes.
Definition: sensor.h:85
@ SENSOR_CHAN_GAUGE_STDBY_CURRENT
Standby current, in amps.
Definition: sensor.h:162
@ SENSOR_CHAN_GAUGE_MAX_LOAD_CURRENT
Max load current, in amps.
Definition: sensor.h:164
@ SENSOR_CHAN_ACCEL_Y
Acceleration on the Y axis, in m/s^2.
Definition: sensor.h:65
@ SENSOR_CHAN_RPM
Revolutions per minute, in RPM.
Definition: sensor.h:155
@ SENSOR_CHAN_GAUGE_FULL_AVAIL_CAPACITY
Full Available Capacity in mAh.
Definition: sensor.h:176
@ SENSOR_CHAN_VOLTAGE
Voltage, in volts.
Definition: sensor.h:131
@ SENSOR_CHAN_BLUE
Illuminance in blue spectrum, in lux.
Definition: sensor.h:108
@ SENSOR_CHAN_LIGHT
Illuminance in visible spectrum, in lux.
Definition: sensor.h:100
@ SENSOR_CHAN_GAUGE_DESIGN_VOLTAGE
Design voltage of cell in V (max voltage)
Definition: sensor.h:188
@ SENSOR_CHAN_ACCEL_Z
Acceleration on the Z axis, in m/s^2.
Definition: sensor.h:67
@ SENSOR_CHAN_CO2
CO2 level, in parts per million (ppm)
Definition: sensor.h:122
@ SENSOR_CHAN_GAUGE_STATE_OF_CHARGE
State of charge measurement in %.
Definition: sensor.h:168
@ SENSOR_CHAN_GAUGE_CYCLE_COUNT
Cycle count (total number of charge/discharge cycles)
Definition: sensor.h:186
@ SENSOR_CHAN_GAUGE_TEMP
Gauge temperature
Definition: sensor.h:166
@ SENSOR_CHAN_POS_DY
Position change on the Y axis, in points.
Definition: sensor.h:150
@ SENSOR_CHAN_GYRO_Z
Angular velocity around the Z axis, in radians/s.
Definition: sensor.h:75
@ SENSOR_CHAN_POS_DX
Position change on the X axis, in points.
Definition: sensor.h:148
@ SENSOR_CHAN_GAUGE_AVG_POWER
Average power in mW.
Definition: sensor.h:178
@ SENSOR_CHAN_GAUGE_TIME_TO_EMPTY
Time to empty in minutes.
Definition: sensor.h:182
@ SENSOR_CHAN_PM_10
10 micro-meters Particulate Matter, in ug/m^3
Definition: sensor.h:117
@ SENSOR_CHAN_GAUGE_REMAINING_CHARGE_CAPACITY
Remaining Charge Capacity in mAh.
Definition: sensor.h:172
@ SENSOR_CHAN_ALL
All channels.
Definition: sensor.h:195
@ SENSOR_CHAN_GAUGE_VOLTAGE
Voltage, in volts.
Definition: sensor.h:158
@ SENSOR_CHAN_PROX
Proximity.
Definition: sensor.h:96
@ SENSOR_CHAN_COMMON_COUNT
Number of all common sensor channels.
Definition: sensor.h:200
@ SENSOR_CHAN_PRIV_START
This and higher values are sensor specific.
Definition: sensor.h:206
@ SENSOR_CHAN_GYRO_X
Angular velocity around the X axis, in radians/s.
Definition: sensor.h:71
@ SENSOR_CHAN_GAS_RES
Gas sensor resistance in ohms.
Definition: sensor.h:128
@ SENSOR_CHAN_HUMIDITY
Humidity, in percent.
Definition: sensor.h:98
@ SENSOR_CHAN_DISTANCE
Distance.
Definition: sensor.h:119
@ SENSOR_CHAN_IR
Illuminance in infra-red spectrum, in lux.
Definition: sensor.h:102
@ SENSOR_CHAN_MAX
Maximum value describing a sensor channel type.
Definition: sensor.h:211
@ SENSOR_CHAN_POS_DZ
Position change on the Z axis, in points.
Definition: sensor.h:152
@ SENSOR_CHAN_RED
Illuminance in red spectrum, in lux.
Definition: sensor.h:104
@ SENSOR_CHAN_ALTITUDE
Altitude, in meters.
Definition: sensor.h:110
@ SENSOR_CHAN_GAUGE_NOM_AVAIL_CAPACITY
Nominal Available Capacity in mAh.
Definition: sensor.h:174
@ SENSOR_CHAN_ACCEL_X
Acceleration on the X axis, in m/s^2.
Definition: sensor.h:63
@ SENSOR_CHAN_VOC
VOC level, in parts per billion (ppb)
Definition: sensor.h:126
#define IS_ENABLED(config_macro)
Check for macro definition in compiler-visible expressions.
Definition: util_macro.h:124
#define ENOSYS
Function not implemented.
Definition: errno.h:83
#define ENOMEM
Not enough core.
Definition: errno.h:51
#define ERANGE
Result too large.
Definition: errno.h:73
Size of off_t must be equal or less than size of size_t
Definition: retained_mem.h:28
Real-Time IO device API for moving bytes with low effort.
#define bool
Definition: stdbool.h:13
__UINT32_TYPE__ uint32_t
Definition: stdint.h:90
__INT32_TYPE__ int32_t
Definition: stdint.h:74
#define INT32_MAX
Definition: stdint.h:18
__UINT64_TYPE__ uint64_t
Definition: stdint.h:91
__UINT8_TYPE__ uint8_t
Definition: stdint.h:88
__UINTPTR_TYPE__ uintptr_t
Definition: stdint.h:105
__UINT16_TYPE__ uint16_t
Definition: stdint.h:89
#define INT32_MIN
Definition: stdint.h:24
#define INT16_MAX
Definition: stdint.h:17
__INT64_TYPE__ int64_t
Definition: stdint.h:75
__INT8_TYPE__ int8_t
Definition: stdint.h:72
void * memcpy(void *ZRESTRICT d, const void *ZRESTRICT s, size_t n)
Runtime device structure (in ROM) per driver instance.
Definition: device.h:399
const void * api
Address of the API structure exposed by the device instance.
Definition: device.h:405
API that an RTIO IO device should implement.
Definition: rtio.h:433
Compute the mempool block index for a given pointer.
Definition: rtio.h:423
struct rtio_sqe sqe
Definition: rtio.h:424
An IO device with a function table for submitting requests.
Definition: rtio.h:448
void * data
Definition: rtio.h:456
A submission queue event.
Definition: rtio.h:232
void * userdata
User provided data which is returned upon operation completion.
Definition: rtio.h:252
uint8_t * buf
Buffer to use.
Definition: rtio.h:259
uint32_t buf_len
Length of buffer.
Definition: rtio.h:258
const struct rtio_iodev * iodev
Device to operation on.
Definition: rtio.h:243
An RTIO context containing what can be viewed as a pair of queues.
Definition: rtio.h:327
Sensor Channel Specification.
Definition: sensor.h:429
uint16_t chan_idx
A sensor channel index.
Definition: sensor.h:431
uint16_t chan_type
A sensor channel type.
Definition: sensor.h:430
Definition: sensor.h:907
uint64_t timestamp_ns
Definition: sensor.h:909
int8_t shift
Definition: sensor.h:918
uint32_t num_channels
Definition: sensor.h:915
Used for iterating over the data frames via the sensor_decoder_api.
Definition: sensor.h:551
const struct sensor_decoder_api * decoder
Definition: sensor.h:552
struct sensor_chan_spec channel
Definition: sensor.h:554
const uint8_t * buffer
Definition: sensor.h:553
uint32_t fit
Definition: sensor.h:555
Decodes a single raw data buffer.
Definition: sensor.h:461
int(* get_size_info)(struct sensor_chan_spec channel, size_t *base_size, size_t *frame_size)
Get the size required to decode a given channel.
Definition: sensor.h:486
int(* get_frame_count)(const uint8_t *buffer, struct sensor_chan_spec channel, uint16_t *frame_count)
Get the number of frames in the current buffer.
Definition: sensor.h:471
int(* decode)(const uint8_t *buffer, struct sensor_chan_spec channel, uint32_t *fit, uint16_t max_count, void *data_out)
Decode up to max_count samples from the buffer.
Definition: sensor.h:514
bool(* has_trigger)(const uint8_t *buffer, enum sensor_trigger_type trigger)
Check if the given trigger type is present.
Definition: sensor.h:524
Definition: sensor.h:696
sensor_get_decoder_t get_decoder
Definition: sensor.h:702
sensor_attr_set_t attr_set
Definition: sensor.h:697
sensor_attr_get_t attr_get
Definition: sensor.h:698
sensor_trigger_set_t trigger_set
Definition: sensor.h:699
sensor_sample_fetch_t sample_fetch
Definition: sensor.h:700
sensor_channel_get_t channel_get
Definition: sensor.h:701
sensor_submit_t submit
Definition: sensor.h:703
Definition: sensor.h:620
struct sensor_chan_spec *const channels
Definition: sensor.h:624
size_t count
Definition: sensor.h:627
struct sensor_stream_trigger *const triggers
Definition: sensor.h:625
const bool is_streaming
Definition: sensor.h:622
const struct device * sensor
Definition: sensor.h:621
const size_t max
Definition: sensor.h:628
Definition: sensor.h:606
enum sensor_stream_data_opt opt
Definition: sensor.h:608
enum sensor_trigger_type trigger
Definition: sensor.h:607
Sensor trigger spec.
Definition: sensor.h:284
enum sensor_trigger_type type
Trigger type.
Definition: sensor.h:286
enum sensor_channel chan
Channel the trigger is set on.
Definition: sensor.h:288
Representation of a sensor readout value.
Definition: sensor.h:51
int32_t val2
Fractional part of the value (in one-millionth parts).
Definition: sensor.h:55
int32_t val1
Integer part of the value.
Definition: sensor.h:53
#define INT64_C(x)
Definition: xcc.h:90