USB-C device stack
The USB-C device stack is a hardware independent interface between a Type-C Port Controller (TCPC) and customer applications. It is a port of the Google ChromeOS Type-C Port Manager (TCPM) stack. It provides the following functionalities:
Uses the APIs provided by the Type-C Port Controller drivers to interact with the Type-C Port Controller.
Provides a programming interface that’s used by a customer applications. The APIs is described in include/zephyr/usb_c/usbc.h
Currently the device stack supports implementation of Sink only and Source only devices. Dual Role Power (DRP) devices are not yet supported.
List of samples for different purposes.
Implementing a Sink Type-C and Power Delivery USB-C device
The configuration of a USB-C Device is done in the stack layer and devicetree.
The following devicetree, structures and callbacks need to be defined:
Devicetree usb-c-connector node referencing a TCPC
Devicetree vbus node referencing a VBUS measurement device
User defined structure that encapsulates application specific data
Policy callbacks
For example, for the Sample USB-C Sink application:
Each Physical Type-C port is represented in the devicetree by a usb-c-connector compatible node:
1 port1: usbc-port@1 {
2 compatible = "usb-c-connector";
3 reg = <1>;
4 tcpc = <&ucpd1>;
5 vbus = <&vbus1>;
6 power-role = "sink";
7 sink-pdos = <PDO_FIXED(5000, 100, 0)>;
8 };
VBUS is measured by a device that’s referenced in the devicetree by a usb-c-vbus-adc compatible node:
1 vbus1: vbus {
2 compatible = "zephyr,usb-c-vbus-adc";
3 io-channels = <&adc2 8>;
4 output-ohms = <49900>;
5 full-ohms = <(330000 + 49900)>;
6 };
A user defined structure is defined and later registered with the subsystem and can be accessed from callback through an API:
1/**
2 * @brief A structure that encapsulates Port data.
3 */
4static struct port0_data_t {
5 /** Sink Capabilities */
6 uint32_t snk_caps[DT_PROP_LEN(USBC_PORT0_NODE, sink_pdos)];
7 /** Number of Sink Capabilities */
8 int snk_cap_cnt;
9 /** Source Capabilities */
10 uint32_t src_caps[PDO_MAX_DATA_OBJECTS];
11 /** Number of Source Capabilities */
12 int src_cap_cnt;
13 /* Power Supply Ready flag */
14 atomic_t ps_ready;
15} port0_data = {
16 .snk_caps = {DT_FOREACH_PROP_ELEM(USBC_PORT0_NODE, sink_pdos, SINK_PDO)},
17 .snk_cap_cnt = DT_PROP_LEN(USBC_PORT0_NODE, sink_pdos),
18 .src_caps = {0},
19 .src_cap_cnt = 0,
20 .ps_ready = 0
21};
22
These callbacks are used by the subsystem to set or get application specific data:
1static int port0_policy_cb_get_snk_cap(const struct device *dev,
2 uint32_t **pdos,
3 int *num_pdos)
4{
5 struct port0_data_t *dpm_data = usbc_get_dpm_data(dev);
6
7 *pdos = dpm_data->snk_caps;
8 *num_pdos = dpm_data->snk_cap_cnt;
9
10 return 0;
11}
12
13static void port0_policy_cb_set_src_cap(const struct device *dev,
14 const uint32_t *pdos,
15 const int num_pdos)
16{
17 struct port0_data_t *dpm_data;
18 int num;
19 int i;
20
21 dpm_data = usbc_get_dpm_data(dev);
22
23 num = num_pdos;
24 if (num > PDO_MAX_DATA_OBJECTS) {
25 num = PDO_MAX_DATA_OBJECTS;
26 }
27
28 for (i = 0; i < num; i++) {
29 dpm_data->src_caps[i] = *(pdos + i);
30 }
31
32 dpm_data->src_cap_cnt = num;
33}
34
35static uint32_t port0_policy_cb_get_rdo(const struct device *dev)
36{
37 struct port0_data_t *dpm_data = usbc_get_dpm_data(dev);
38
39 return build_rdo(dpm_data);
40}
This callback is used by the subsystem to query if a certain action can be taken:
1bool port0_policy_check(const struct device *dev,
2 const enum usbc_policy_check_t policy_check)
3{
4 switch (policy_check) {
5 case CHECK_POWER_ROLE_SWAP:
6 /* Reject power role swaps */
7 return false;
8 case CHECK_DATA_ROLE_SWAP_TO_DFP:
9 /* Reject data role swap to DFP */
10 return false;
11 case CHECK_DATA_ROLE_SWAP_TO_UFP:
12 /* Accept data role swap to UFP */
13 return true;
14 case CHECK_SNK_AT_DEFAULT_LEVEL:
15 /* This device is always at the default power level */
16 return true;
17 default:
18 /* Reject all other policy checks */
19 return false;
20
21 }
22}
This callback is used by the subsystem to notify the application of an event:
1static void port0_notify(const struct device *dev,
2 const enum usbc_policy_notify_t policy_notify)
3{
4 struct port0_data_t *dpm_data = usbc_get_dpm_data(dev);
5
6 switch (policy_notify) {
7 case PROTOCOL_ERROR:
8 break;
9 case MSG_DISCARDED:
10 break;
11 case MSG_ACCEPT_RECEIVED:
12 break;
13 case MSG_REJECTED_RECEIVED:
14 break;
15 case MSG_NOT_SUPPORTED_RECEIVED:
16 break;
17 case TRANSITION_PS:
18 atomic_set_bit(&dpm_data->ps_ready, 0);
19 break;
20 case PD_CONNECTED:
21 break;
22 case NOT_PD_CONNECTED:
23 break;
24 case POWER_CHANGE_0A0:
25 LOG_INF("PWR 0A");
26 break;
27 case POWER_CHANGE_DEF:
28 LOG_INF("PWR DEF");
29 break;
30 case POWER_CHANGE_1A5:
31 LOG_INF("PWR 1A5");
32 break;
33 case POWER_CHANGE_3A0:
34 LOG_INF("PWR 3A0");
35 break;
36 case DATA_ROLE_IS_UFP:
37 break;
38 case DATA_ROLE_IS_DFP:
39 break;
40 case PORT_PARTNER_NOT_RESPONSIVE:
41 LOG_INF("Port Partner not PD Capable");
42 break;
43 case SNK_TRANSITION_TO_DEFAULT:
44 break;
45 case HARD_RESET_RECEIVED:
46 break;
47 case SENDER_RESPONSE_TIMEOUT:
48 break;
49 case SOURCE_CAPABILITIES_RECEIVED:
50 break;
51 }
52}
Registering the callbacks:
1 /* Register USB-C Callbacks */
2
3 /* Register Policy Check callback */
4 usbc_set_policy_cb_check(usbc_port0, port0_policy_check);
5 /* Register Policy Notify callback */
6 usbc_set_policy_cb_notify(usbc_port0, port0_notify);
7 /* Register Policy Get Sink Capabilities callback */
8 usbc_set_policy_cb_get_snk_cap(usbc_port0, port0_policy_cb_get_snk_cap);
9 /* Register Policy Set Source Capabilities callback */
10 usbc_set_policy_cb_set_src_cap(usbc_port0, port0_policy_cb_set_src_cap);
11 /* Register Policy Get Request Data Object callback */
12 usbc_set_policy_cb_get_rdo(usbc_port0, port0_policy_cb_get_rdo);
Register the user defined structure:
1 /* Set Application port data object. This object is passed to the policy callbacks */
2 port0_data.ps_ready = ATOMIC_INIT(0);
3 usbc_set_dpm_data(usbc_port0, &port0_data);
Start the USB-C subsystem:
1 /* Start the USB-C Subsystem */
2 usbc_start(usbc_port0);
Implementing a Source Type-C and Power Delivery USB-C device
The configuration of a USB-C Device is done in the stack layer and devicetree.
Define the following devicetree, structures and callbacks:
Devicetree
usb-c-connector
node referencing a TCPCDevicetree
vbus
node referencing a VBUS measurement deviceUser defined structure that encapsulates application specific data
Policy callbacks
For example, for the Sample USB-C Source application:
Each Physical Type-C port is represented in the devicetree by a usb-c-connector
compatible node:
1 port1: usbc-port@1 {
2 compatible = "usb-c-connector";
3 reg = <1>;
4 tcpc = <&ucpd1>;
5 vbus = <&vbus1>;
6 power-role = "source";
7 typec-power-opmode = "3.0A";
8 source-pdos = <PDO_FIXED(5000, 100, 0) PDO_FIXED(9000, 100, 0) PDO_FIXED(15000, 100, 0)>;
9 };
VBUS is measured by a device that’s referenced in the devicetree by a
usb-c-vbus-adc
compatible node:
1 vbus1: vbus {
2 compatible = "zephyr,usb-c-vbus-adc";
3 io-channels = <&adc1 9>;
4 output-ohms = <49900>;
5 full-ohms = <(330000 + 49900)>;
6
7 /* Pin B13 is used to control VBUS Discharge for Port1 */
8 discharge-gpios = <&gpiob 13 GPIO_ACTIVE_HIGH>;
9 };
A user defined structure is defined and later registered with the subsystem and can be accessed from callback through an API:
1/**
2 * @brief A structure that encapsulates Port data.
3 */
4static struct port0_data_t {
5 /** Source Capabilities */
6 uint32_t src_caps[DT_PROP_LEN(USBC_PORT0_NODE, source_pdos)];
7 /** Number of Source Capabilities */
8 int src_cap_cnt;
9 /** CC Rp value */
10 int rp;
11 /** Sink Request RDO */
12 union pd_rdo sink_request;
13 /** Requested Object Pos */
14 int obj_pos;
15 /** VCONN CC line*/
16 enum tc_cc_polarity vconn_pol;
17 /** True if power supply is ready */
18 bool ps_ready;
19 /** True if power supply should transition to a new level */
20 bool ps_tran_start;
21 /** Log Sink Requested RDO to console */
22 atomic_t show_sink_request;
23} port0_data = {
24 .rp = DT_ENUM_IDX(USBC_PORT0_NODE, typec_power_opmode),
25 .src_caps = {DT_FOREACH_PROP_ELEM(USBC_PORT0_NODE, source_pdos, SOURCE_PDO)},
26 .src_cap_cnt = DT_PROP_LEN(USBC_PORT0_NODE, source_pdos),
27};
28
These callbacks are used by the subsystem to set or get application specific data:
1/**
2 * @brief PE calls this function when it needs to set the Rp on CC
3 */
4int port0_policy_cb_get_src_rp(const struct device *dev,
5 enum tc_rp_value *rp)
6{
7 struct port0_data_t *dpm_data = usbc_get_dpm_data(dev);
8
9 *rp = dpm_data->rp;
10
11 return 0;
12}
13
14/**
15 * @brief PE calls this function to Enable (5V) or Disable (0V) the
16 * Power Supply
17 */
18int port0_policy_cb_src_en(const struct device *dev, bool en)
19{
20 source_ctrl_set(en ? SOURCE_5V : SOURCE_0V);
21
22 return 0;
23}
24
25/**
26 * @brief PE calls this function to Enable or Disable VCONN
27 */
28int port0_policy_cb_vconn_en(const struct device *dev, enum tc_cc_polarity pol, bool en)
29{
30 struct port0_data_t *dpm_data = usbc_get_dpm_data(dev);
31
32 dpm_data->vconn_pol = pol;
33
34 if (en == false) {
35 /* Disable VCONN on CC1 and CC2 */
36 vconn_ctrl_set(VCONN_OFF);
37 } else if (pol == TC_POLARITY_CC1) {
38 /* set VCONN on CC1 */
39 vconn_ctrl_set(VCONN1_ON);
40 } else {
41 /* set VCONN on CC2 */
42 vconn_ctrl_set(VCONN2_ON);
43 }
44
45 return 0;
46}
47
48/**
49 * @brief PE calls this function to get the Source Caps that will be sent
50 * to the Sink
51 */
52int port0_policy_cb_get_src_caps(const struct device *dev,
53 const uint32_t **pdos, uint32_t *num_pdos)
54{
55 struct port0_data_t *dpm_data = usbc_get_dpm_data(dev);
56
57 *pdos = dpm_data->src_caps;
58 *num_pdos = dpm_data->src_cap_cnt;
59
60 return 0;
61}
62
63/**
64 * @brief PE calls this function to verify that a Sink's request if valid
65 */
66static enum usbc_snk_req_reply_t port0_policy_cb_check_sink_request(const struct device *dev,
67 const uint32_t request_msg)
68{
69 struct port0_data_t *dpm_data = usbc_get_dpm_data(dev);
70 union pd_fixed_supply_pdo_source pdo;
71 uint32_t obj_pos;
72 uint32_t op_current;
73
74 dpm_data->sink_request.raw_value = request_msg;
75 obj_pos = dpm_data->sink_request.fixed.object_pos;
76 op_current =
77 PD_CONVERT_FIXED_PDO_CURRENT_TO_MA(dpm_data->sink_request.fixed.operating_current);
78
79 if (obj_pos == 0 || obj_pos > dpm_data->src_cap_cnt) {
80 return SNK_REQUEST_REJECT;
81 }
82
83 pdo.raw_value = dpm_data->src_caps[obj_pos - 1];
84
85 if (dpm_data->sink_request.fixed.operating_current > pdo.max_current) {
86 return SNK_REQUEST_REJECT;
87 }
88
89 dpm_data->obj_pos = obj_pos;
90
91 atomic_set_bit(&port0_data.show_sink_request, 0);
92
93 /*
94 * Clear PS ready. This will be set to true after PS is ready after
95 * it transitions to the new level.
96 */
97 port0_data.ps_ready = false;
98
99 return SNK_REQUEST_VALID;
100}
101
102/**
103 * @brief PE calls this function to check if the Power Supply is at the requested
104 * level
105 */
106static bool port0_policy_cb_is_ps_ready(const struct device *dev)
107{
108 struct port0_data_t *dpm_data = usbc_get_dpm_data(dev);
109
110
111 /* Return true to inform that the Power Supply is ready */
112 return dpm_data->ps_ready;
113}
114
115/**
116 * @brief PE calls this function to check if the Present Contract is still
117 * valid
118 */
119static bool port0_policy_cb_present_contract_is_valid(const struct device *dev,
120 const uint32_t present_contract)
121{
122 struct port0_data_t *dpm_data = usbc_get_dpm_data(dev);
123 union pd_fixed_supply_pdo_source pdo;
124 union pd_rdo request;
125 uint32_t obj_pos;
126 uint32_t op_current;
127
128 request.raw_value = present_contract;
129 obj_pos = request.fixed.object_pos;
130 op_current = PD_CONVERT_FIXED_PDO_CURRENT_TO_MA(request.fixed.operating_current);
131
132 if (obj_pos == 0 || obj_pos > dpm_data->src_cap_cnt) {
133 return false;
134 }
135
136 pdo.raw_value = dpm_data->src_caps[obj_pos - 1];
137
138 if (request.fixed.operating_current > pdo.max_current) {
139 return false;
140 }
141
142 return true;
143}
144
This callback is used by the subsystem to query if a certain action can be taken:
1bool port0_policy_check(const struct device *dev,
2 const enum usbc_policy_check_t policy_check)
3{
4 struct port0_data_t *dpm_data = usbc_get_dpm_data(dev);
5
6 switch (policy_check) {
7 case CHECK_POWER_ROLE_SWAP:
8 /* Reject power role swaps */
9 return false;
10 case CHECK_DATA_ROLE_SWAP_TO_DFP:
11 /* Accept data role swap to DFP */
12 return true;
13 case CHECK_DATA_ROLE_SWAP_TO_UFP:
14 /* Reject data role swap to UFP */
15 return false;
16 case CHECK_SRC_PS_AT_DEFAULT_LEVEL:
17 /*
18 * This check is sent from the PE_SRC_Transition_to_default
19 * state and requires the following:
20 * 1: Vconn should be turned ON
21 * 2: Return TRUE when Power Supply is at default level
22 */
23
24 /* Power on VCONN */
25 vconn_ctrl_set(dpm_data->vconn_pol);
26
27 /* PS should be at default level after receiving a Hard Reset */
28 return true;
29 default:
30 /* Reject all other policy checks */
31 return false;
32
33 }
34}
This callback is used by the subsystem to notify the application of an event:
1static void port0_notify(const struct device *dev,
2 const enum usbc_policy_notify_t policy_notify)
3{
4 struct port0_data_t *dpm_data = usbc_get_dpm_data(dev);
5
6 switch (policy_notify) {
7 case PROTOCOL_ERROR:
8 break;
9 case MSG_DISCARDED:
10 break;
11 case MSG_ACCEPT_RECEIVED:
12 break;
13 case MSG_REJECTED_RECEIVED:
14 break;
15 case MSG_NOT_SUPPORTED_RECEIVED:
16 break;
17 case TRANSITION_PS:
18 dpm_data->ps_tran_start = true;
19 break;
20 case PD_CONNECTED:
21 break;
22 case NOT_PD_CONNECTED:
23 break;
24 case DATA_ROLE_IS_UFP:
25 break;
26 case DATA_ROLE_IS_DFP:
27 break;
28 case PORT_PARTNER_NOT_RESPONSIVE:
29 LOG_INF("Port Partner not PD Capable");
30 break;
31 case HARD_RESET_RECEIVED:
32 /*
33 * This notification is sent from the PE_SRC_Transition_to_default
34 * state and requires the following:
35 * 1: Vconn should be turned OFF
36 * 2: Reset of the local hardware
37 */
38
39 /* Power off VCONN */
40 vconn_ctrl_set(VCONN_OFF);
41 /* Transition PS to Default level */
42 source_ctrl_set(SOURCE_5V);
43 break;
44 default:
45 }
46}
Registering the callbacks:
1 /* Register USB-C Callbacks */
2
3 /* Register Policy Check callback */
4 usbc_set_policy_cb_check(usbc_port0, port0_policy_check);
5 /* Register Policy Notify callback */
6 usbc_set_policy_cb_notify(usbc_port0, port0_notify);
7 /* Register Policy callback to set the Rp on CC lines */
8 usbc_set_policy_cb_get_src_rp(usbc_port0, port0_policy_cb_get_src_rp);
9 /* Register Policy callback to enable or disable power supply */
10 usbc_set_policy_cb_src_en(usbc_port0, port0_policy_cb_src_en);
11 /* Register Policy callback to enable or disable vconn */
12 usbc_set_vconn_control_cb(usbc_port0, port0_policy_cb_vconn_en);
13 /* Register Policy callback to send the source caps to the sink */
14 usbc_set_policy_cb_get_src_caps(usbc_port0, port0_policy_cb_get_src_caps);
15 /* Register Policy callback to check if the sink request is valid */
16 usbc_set_policy_cb_check_sink_request(usbc_port0, port0_policy_cb_check_sink_request);
17 /* Register Policy callback to check if the power supply is ready */
18 usbc_set_policy_cb_is_ps_ready(usbc_port0, port0_policy_cb_is_ps_ready);
19 /* Register Policy callback to check if Present Contract is still valid */
20 usbc_set_policy_cb_present_contract_is_valid(usbc_port0,
21 port0_policy_cb_present_contract_is_valid);
22
Register the user defined structure:
1 /* Set Application port data object. This object is passed to the policy callbacks */
2 usbc_set_dpm_data(usbc_port0, &port0_data);
Start the USB-C subsystem:
1 /* Start the USB-C Subsystem */
2 usbc_start(usbc_port0);