13#ifndef ZEPHYR_INCLUDE_KERNEL_H_
14#define ZEPHYR_INCLUDE_KERNEL_H_
16#if !defined(_ASMLANGUAGE)
34BUILD_ASSERT(
sizeof(
int32_t) ==
sizeof(
int));
35BUILD_ASSERT(
sizeof(
int64_t) ==
sizeof(
long long));
36BUILD_ASSERT(
sizeof(
intptr_t) ==
sizeof(
long));
49#if (CONFIG_NUM_COOP_PRIORITIES + CONFIG_NUM_PREEMPT_PRIORITIES) == 0
50#error Zero available thread priorities defined!
53#define K_PRIO_COOP(x) (-(CONFIG_NUM_COOP_PRIORITIES - (x)))
54#define K_PRIO_PREEMPT(x) (x)
56#define K_HIGHEST_THREAD_PRIO (-CONFIG_NUM_COOP_PRIORITIES)
57#define K_LOWEST_THREAD_PRIO CONFIG_NUM_PREEMPT_PRIORITIES
58#define K_IDLE_PRIO K_LOWEST_THREAD_PRIO
59#define K_HIGHEST_APPLICATION_THREAD_PRIO (K_HIGHEST_THREAD_PRIO)
60#define K_LOWEST_APPLICATION_THREAD_PRIO (K_LOWEST_THREAD_PRIO - 1)
63#define Z_POLL_EVENT_OBJ_INIT(obj) \
64 .poll_events = SYS_DLIST_STATIC_INIT(&obj.poll_events),
65#define Z_DECL_POLL_EVENT sys_dlist_t poll_events;
67#define Z_POLL_EVENT_OBJ_INIT(obj)
68#define Z_DECL_POLL_EVENT
174#define K_ESSENTIAL (BIT(0))
186#define K_FP_REGS (BIT(K_FP_IDX))
194#define K_USER (BIT(2))
204#define K_INHERIT_PERMS (BIT(3))
215#define K_CALLBACK_STATE (BIT(4))
227#define K_DSP_REGS (BIT(K_DSP_IDX))
238#define K_AGU_REGS (BIT(K_AGU_IDX))
249#define K_SSE_REGS (BIT(7))
253#if !defined(_ASMLANGUAGE)
336 void *p1,
void *p2,
void *p3,
377#define k_thread_access_grant(thread, ...) \
378 FOR_EACH_FIXED_ARG(k_object_access_grant, (;), thread, __VA_ARGS__)
400#if defined(CONFIG_INIT_STACKS) && defined(CONFIG_THREAD_STACK_INFO)
421__syscall
int k_thread_stack_space_get(
const struct k_thread *thread,
425#if (K_HEAP_MEM_POOL_SIZE > 0)
438void k_thread_system_pool_assign(
struct k_thread *thread);
491 return k_sleep(Z_TIMEOUT_MS(ms));
588#ifdef CONFIG_CURRENT_THREAD_USE_TLS
591 extern __thread
k_tid_t z_tls_current;
593 return z_tls_current;
632k_ticks_t z_timeout_expires(
const struct _timeout *timeout);
633k_ticks_t z_timeout_remaining(
const struct _timeout *timeout);
635#ifdef CONFIG_SYS_CLOCK_EXISTS
646static inline k_ticks_t z_impl_k_thread_timeout_expires_ticks(
649 return z_timeout_expires(&thread->
base.timeout);
661static inline k_ticks_t z_impl_k_thread_timeout_remaining_ticks(
664 return z_timeout_remaining(&thread->
base.timeout);
673struct _static_thread_data {
676 unsigned int init_stack_size;
683 const char *init_name;
684#ifdef CONFIG_TIMER_READS_ITS_FREQUENCY_AT_RUNTIME
691#ifdef CONFIG_TIMER_READS_ITS_FREQUENCY_AT_RUNTIME
692#define Z_THREAD_INIT_DELAY_INITIALIZER(ms) .init_delay_ms = (ms)
693#define Z_THREAD_INIT_DELAY(thread) SYS_TIMEOUT_MS((thread)->init_delay_ms)
695#define Z_THREAD_INIT_DELAY_INITIALIZER(ms) .init_delay = SYS_TIMEOUT_MS(ms)
696#define Z_THREAD_INIT_DELAY(thread) (thread)->init_delay
699#define Z_THREAD_INITIALIZER(thread, stack, stack_size, \
701 prio, options, delay, tname) \
703 .init_thread = (thread), \
704 .init_stack = (stack), \
705 .init_stack_size = (stack_size), \
706 .init_entry = (k_thread_entry_t)entry, \
707 .init_p1 = (void *)p1, \
708 .init_p2 = (void *)p2, \
709 .init_p3 = (void *)p3, \
710 .init_prio = (prio), \
711 .init_options = (options), \
712 .init_name = STRINGIFY(tname), \
713 Z_THREAD_INIT_DELAY_INITIALIZER(delay) \
720#define Z_THREAD_COMMON_DEFINE(name, stack_size, \
722 prio, options, delay) \
723 struct k_thread _k_thread_obj_##name; \
724 STRUCT_SECTION_ITERABLE(_static_thread_data, \
725 _k_thread_data_##name) = \
726 Z_THREAD_INITIALIZER(&_k_thread_obj_##name, \
727 _k_thread_stack_##name, stack_size,\
728 entry, p1, p2, p3, prio, options, \
730 const k_tid_t name = (k_tid_t)&_k_thread_obj_##name
767#define K_THREAD_DEFINE(name, stack_size, \
769 prio, options, delay) \
770 K_THREAD_STACK_DEFINE(_k_thread_stack_##name, stack_size); \
771 Z_THREAD_COMMON_DEFINE(name, stack_size, entry, p1, p2, p3, \
772 prio, options, delay)
804#define K_KERNEL_THREAD_DEFINE(name, stack_size, \
806 prio, options, delay) \
807 K_KERNEL_STACK_DEFINE(_k_thread_stack_##name, stack_size); \
808 Z_THREAD_COMMON_DEFINE(name, stack_size, entry, p1, p2, p3, \
809 prio, options, delay)
850#ifdef CONFIG_SCHED_DEADLINE
886#ifdef CONFIG_SCHED_CPU_MASK
1110 extern bool z_sys_post_kernel;
1112 return !z_sys_post_kernel;
1253#define K_NO_WAIT Z_TIMEOUT_NO_WAIT
1267#define K_NSEC(t) Z_TIMEOUT_NS(t)
1281#define K_USEC(t) Z_TIMEOUT_US(t)
1293#define K_CYC(t) Z_TIMEOUT_CYC(t)
1305#define K_TICKS(t) Z_TIMEOUT_TICKS(t)
1317#define K_MSEC(ms) Z_TIMEOUT_MS(ms)
1329#define K_SECONDS(s) K_MSEC((s) * MSEC_PER_SEC)
1341#define K_MINUTES(m) K_SECONDS((m) * 60)
1353#define K_HOURS(h) K_MINUTES((h) * 60)
1363#define K_FOREVER Z_FOREVER
1365#ifdef CONFIG_TIMEOUT_64BIT
1378#define K_TIMEOUT_ABS_TICKS(t) \
1379 Z_TIMEOUT_TICKS(Z_TICK_ABS((k_ticks_t)MAX(t, 0)))
1392#define K_TIMEOUT_ABS_MS(t) K_TIMEOUT_ABS_TICKS(k_ms_to_ticks_ceil64(t))
1406#define K_TIMEOUT_ABS_US(t) K_TIMEOUT_ABS_TICKS(k_us_to_ticks_ceil64(t))
1420#define K_TIMEOUT_ABS_NS(t) K_TIMEOUT_ABS_TICKS(k_ns_to_ticks_ceil64(t))
1434#define K_TIMEOUT_ABS_CYC(t) K_TIMEOUT_ABS_TICKS(k_cyc_to_ticks_ceil64(t))
1452 struct _timeout timeout;
1458 void (*expiry_fn)(
struct k_timer *timer);
1461 void (*stop_fn)(
struct k_timer *timer);
1474#ifdef CONFIG_OBJ_CORE_TIMER
1479#define Z_TIMER_INITIALIZER(obj, expiry, stop) \
1483 .fn = z_timer_expiration_handler, \
1486 .wait_q = Z_WAIT_Q_INIT(&obj.wait_q), \
1487 .expiry_fn = expiry, \
1542#define K_TIMER_DEFINE(name, expiry_fn, stop_fn) \
1543 STRUCT_SECTION_ITERABLE(k_timer, name) = \
1544 Z_TIMER_INITIALIZER(name, expiry_fn, stop_fn)
1627#ifdef CONFIG_SYS_CLOCK_EXISTS
1641static inline k_ticks_t z_impl_k_timer_expires_ticks(
1642 const struct k_timer *timer)
1644 return z_timeout_expires(&timer->timeout);
1656static inline k_ticks_t z_impl_k_timer_remaining_ticks(
1657 const struct k_timer *timer)
1659 return z_timeout_remaining(&timer->timeout);
1696static inline void z_impl_k_timer_user_data_set(
struct k_timer *timer,
1699 timer->user_data = user_data;
1711static inline void *z_impl_k_timer_user_data_get(
const struct k_timer *timer)
1713 return timer->user_data;
1806 delta = uptime - *reftime;
1837 if (!
IS_ENABLED(CONFIG_TIMER_HAS_64BIT_CYCLE_COUNTER)) {
1838 __ASSERT(0,
"64-bit cycle counter not enabled on this platform. "
1839 "See CONFIG_TIMER_HAS_64BIT_CYCLE_COUNTER");
1864#define Z_QUEUE_INITIALIZER(obj) \
1866 .data_q = SYS_SFLIST_STATIC_INIT(&obj.data_q), \
1868 .wait_q = Z_WAIT_Q_INIT(&obj.wait_q), \
1869 Z_POLL_EVENT_OBJ_INIT(obj) \
2090static inline int z_impl_k_queue_is_empty(
struct k_queue *queue)
2126#define K_QUEUE_DEFINE(name) \
2127 STRUCT_SECTION_ITERABLE(k_queue, name) = \
2128 Z_QUEUE_INITIALIZER(name)
2132#ifdef CONFIG_USERSPACE
2153struct z_futex_data {
2158#define Z_FUTEX_DATA_INITIALIZER(obj) \
2160 .wait_q = Z_WAIT_Q_INIT(&obj.wait_q) \
2228#ifdef CONFIG_OBJ_CORE_EVENT
2234#define Z_EVENT_INITIALIZER(obj) \
2236 .wait_q = Z_WAIT_Q_INIT(&obj.wait_q), \
2382#define K_EVENT_DEFINE(name) \
2383 STRUCT_SECTION_ITERABLE(k_event, name) = \
2384 Z_EVENT_INITIALIZER(name);
2390#ifdef CONFIG_OBJ_CORE_FIFO
2398#define Z_FIFO_INITIALIZER(obj) \
2400 ._queue = Z_QUEUE_INITIALIZER(obj._queue) \
2420#define k_fifo_init(fifo) \
2422 SYS_PORT_TRACING_OBJ_FUNC_ENTER(k_fifo, init, fifo); \
2423 k_queue_init(&(fifo)->_queue); \
2424 K_OBJ_CORE_INIT(K_OBJ_CORE(fifo), _obj_type_fifo); \
2425 K_OBJ_CORE_LINK(K_OBJ_CORE(fifo)); \
2426 SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_fifo, init, fifo); \
2440#define k_fifo_cancel_wait(fifo) \
2442 SYS_PORT_TRACING_OBJ_FUNC_ENTER(k_fifo, cancel_wait, fifo); \
2443 k_queue_cancel_wait(&(fifo)->_queue); \
2444 SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_fifo, cancel_wait, fifo); \
2459#define k_fifo_put(fifo, data) \
2461 SYS_PORT_TRACING_OBJ_FUNC_ENTER(k_fifo, put, fifo, data); \
2462 k_queue_append(&(fifo)->_queue, data); \
2463 SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_fifo, put, fifo, data); \
2482#define k_fifo_alloc_put(fifo, data) \
2484 SYS_PORT_TRACING_OBJ_FUNC_ENTER(k_fifo, alloc_put, fifo, data); \
2485 int fap_ret = k_queue_alloc_append(&(fifo)->_queue, data); \
2486 SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_fifo, alloc_put, fifo, data, fap_ret); \
2504#define k_fifo_put_list(fifo, head, tail) \
2506 SYS_PORT_TRACING_OBJ_FUNC_ENTER(k_fifo, put_list, fifo, head, tail); \
2507 k_queue_append_list(&(fifo)->_queue, head, tail); \
2508 SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_fifo, put_list, fifo, head, tail); \
2524#define k_fifo_put_slist(fifo, list) \
2526 SYS_PORT_TRACING_OBJ_FUNC_ENTER(k_fifo, put_slist, fifo, list); \
2527 k_queue_merge_slist(&(fifo)->_queue, list); \
2528 SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_fifo, put_slist, fifo, list); \
2548#define k_fifo_get(fifo, timeout) \
2550 SYS_PORT_TRACING_OBJ_FUNC_ENTER(k_fifo, get, fifo, timeout); \
2551 void *fg_ret = k_queue_get(&(fifo)->_queue, timeout); \
2552 SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_fifo, get, fifo, timeout, fg_ret); \
2569#define k_fifo_is_empty(fifo) \
2570 k_queue_is_empty(&(fifo)->_queue)
2585#define k_fifo_peek_head(fifo) \
2587 SYS_PORT_TRACING_OBJ_FUNC_ENTER(k_fifo, peek_head, fifo); \
2588 void *fph_ret = k_queue_peek_head(&(fifo)->_queue); \
2589 SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_fifo, peek_head, fifo, fph_ret); \
2604#define k_fifo_peek_tail(fifo) \
2606 SYS_PORT_TRACING_OBJ_FUNC_ENTER(k_fifo, peek_tail, fifo); \
2607 void *fpt_ret = k_queue_peek_tail(&(fifo)->_queue); \
2608 SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_fifo, peek_tail, fifo, fpt_ret); \
2621#define K_FIFO_DEFINE(name) \
2622 STRUCT_SECTION_ITERABLE(k_fifo, name) = \
2623 Z_FIFO_INITIALIZER(name)
2629#ifdef CONFIG_OBJ_CORE_LIFO
2638#define Z_LIFO_INITIALIZER(obj) \
2640 ._queue = Z_QUEUE_INITIALIZER(obj._queue) \
2660#define k_lifo_init(lifo) \
2662 SYS_PORT_TRACING_OBJ_FUNC_ENTER(k_lifo, init, lifo); \
2663 k_queue_init(&(lifo)->_queue); \
2664 K_OBJ_CORE_INIT(K_OBJ_CORE(lifo), _obj_type_lifo); \
2665 K_OBJ_CORE_LINK(K_OBJ_CORE(lifo)); \
2666 SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_lifo, init, lifo); \
2681#define k_lifo_put(lifo, data) \
2683 SYS_PORT_TRACING_OBJ_FUNC_ENTER(k_lifo, put, lifo, data); \
2684 k_queue_prepend(&(lifo)->_queue, data); \
2685 SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_lifo, put, lifo, data); \
2704#define k_lifo_alloc_put(lifo, data) \
2706 SYS_PORT_TRACING_OBJ_FUNC_ENTER(k_lifo, alloc_put, lifo, data); \
2707 int lap_ret = k_queue_alloc_prepend(&(lifo)->_queue, data); \
2708 SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_lifo, alloc_put, lifo, data, lap_ret); \
2729#define k_lifo_get(lifo, timeout) \
2731 SYS_PORT_TRACING_OBJ_FUNC_ENTER(k_lifo, get, lifo, timeout); \
2732 void *lg_ret = k_queue_get(&(lifo)->_queue, timeout); \
2733 SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_lifo, get, lifo, timeout, lg_ret); \
2746#define K_LIFO_DEFINE(name) \
2747 STRUCT_SECTION_ITERABLE(k_lifo, name) = \
2748 Z_LIFO_INITIALIZER(name)
2755#define K_STACK_FLAG_ALLOC ((uint8_t)1)
2762 stack_data_t *base, *next, *top;
2768#ifdef CONFIG_OBJ_CORE_STACK
2773#define Z_STACK_INITIALIZER(obj, stack_buffer, stack_num_entries) \
2775 .wait_q = Z_WAIT_Q_INIT(&obj.wait_q), \
2776 .base = stack_buffer, \
2777 .next = stack_buffer, \
2778 .top = stack_buffer + stack_num_entries, \
2801 stack_data_t *buffer,
uint32_t num_entries);
2882#define K_STACK_DEFINE(name, stack_num_entries) \
2883 stack_data_t __noinit \
2884 _k_stack_buf_##name[stack_num_entries]; \
2885 STRUCT_SECTION_ITERABLE(k_stack, name) = \
2886 Z_STACK_INITIALIZER(name, _k_stack_buf_##name, \
2898extern struct k_work_q k_sys_work_q;
2928#ifdef CONFIG_OBJ_CORE_MUTEX
2936#define Z_MUTEX_INITIALIZER(obj) \
2938 .wait_q = Z_WAIT_Q_INIT(&obj.wait_q), \
2941 .owner_orig_prio = K_LOWEST_APPLICATION_THREAD_PRIO, \
2957#define K_MUTEX_DEFINE(name) \
2958 STRUCT_SECTION_ITERABLE(k_mutex, name) = \
2959 Z_MUTEX_INITIALIZER(name)
3029#ifdef CONFIG_OBJ_CORE_CONDVAR
3034#define Z_CONDVAR_INITIALIZER(obj) \
3036 .wait_q = Z_WAIT_Q_INIT(&obj.wait_q), \
3100#define K_CONDVAR_DEFINE(name) \
3101 STRUCT_SECTION_ITERABLE(k_condvar, name) = \
3102 Z_CONDVAR_INITIALIZER(name)
3120#ifdef CONFIG_OBJ_CORE_SEM
3125#define Z_SEM_INITIALIZER(obj, initial_count, count_limit) \
3127 .wait_q = Z_WAIT_Q_INIT(&obj.wait_q), \
3128 .count = initial_count, \
3129 .limit = count_limit, \
3130 Z_POLL_EVENT_OBJ_INIT(obj) \
3151#define K_SEM_MAX_LIMIT UINT_MAX
3168__syscall
int k_sem_init(
struct k_sem *sem,
unsigned int initial_count,
3169 unsigned int limit);
3228static inline unsigned int z_impl_k_sem_count_get(
struct k_sem *sem)
3244#define K_SEM_DEFINE(name, initial_count, count_limit) \
3245 STRUCT_SECTION_ITERABLE(k_sem, name) = \
3246 Z_SEM_INITIALIZER(name, initial_count, count_limit); \
3247 BUILD_ASSERT(((count_limit) != 0) && \
3248 ((initial_count) <= (count_limit)) && \
3249 ((count_limit) <= K_SEM_MAX_LIMIT));
3808 K_WORK_RUNNING_BIT = 0,
3809 K_WORK_CANCELING_BIT = 1,
3810 K_WORK_QUEUED_BIT = 2,
3811 K_WORK_DELAYED_BIT = 3,
3812 K_WORK_FLUSHING_BIT = 4,
3814 K_WORK_MASK =
BIT(K_WORK_DELAYED_BIT) |
BIT(K_WORK_QUEUED_BIT)
3815 |
BIT(K_WORK_RUNNING_BIT) |
BIT(K_WORK_CANCELING_BIT) |
BIT(K_WORK_FLUSHING_BIT),
3818 K_WORK_DELAYABLE_BIT = 8,
3819 K_WORK_DELAYABLE =
BIT(K_WORK_DELAYABLE_BIT),
3822 K_WORK_QUEUE_STARTED_BIT = 0,
3823 K_WORK_QUEUE_STARTED =
BIT(K_WORK_QUEUE_STARTED_BIT),
3824 K_WORK_QUEUE_BUSY_BIT = 1,
3825 K_WORK_QUEUE_BUSY =
BIT(K_WORK_QUEUE_BUSY_BIT),
3826 K_WORK_QUEUE_DRAIN_BIT = 2,
3827 K_WORK_QUEUE_DRAIN =
BIT(K_WORK_QUEUE_DRAIN_BIT),
3828 K_WORK_QUEUE_PLUGGED_BIT = 3,
3829 K_WORK_QUEUE_PLUGGED =
BIT(K_WORK_QUEUE_PLUGGED_BIT),
3832 K_WORK_QUEUE_NO_YIELD_BIT = 8,
3833 K_WORK_QUEUE_NO_YIELD =
BIT(K_WORK_QUEUE_NO_YIELD_BIT),
3898#define Z_WORK_INITIALIZER(work_handler) { \
3899 .handler = work_handler, \
3914#define Z_WORK_DELAYABLE_INITIALIZER(work_handler) { \
3916 .handler = work_handler, \
3917 .flags = K_WORK_DELAYABLE, \
3937#define K_WORK_DELAYABLE_DEFINE(work, work_handler) \
3938 struct k_work_delayable work \
3939 = Z_WORK_DELAYABLE_INITIALIZER(work_handler)
3952struct z_work_flusher {
3963struct z_work_canceller {
4070 return z_timeout_expires(&dwork->
timeout);
4076 return z_timeout_remaining(&dwork->
timeout);
4108struct k_work_user_q {
4114 K_WORK_USER_STATE_PENDING,
4127#if defined(__cplusplus) && ((__cplusplus - 0) < 202002L)
4128#define Z_WORK_USER_INITIALIZER(work_handler) { NULL, work_handler, 0 }
4130#define Z_WORK_USER_INITIALIZER(work_handler) \
4132 ._reserved = NULL, \
4133 .handler = work_handler, \
4149#define K_WORK_USER_DEFINE(work, work_handler) \
4150 struct k_work_user work = Z_WORK_USER_INITIALIZER(work_handler)
4164 *work = (
struct k_work_user)Z_WORK_USER_INITIALIZER(handler);
4207 struct k_work_user *work)
4212 K_WORK_USER_STATE_PENDING)) {
4220 K_WORK_USER_STATE_PENDING);
4248 size_t stack_size,
int prio,
4263 return &work_q->thread;
4275 struct z_poller poller;
4279 struct _timeout timeout;
4303#define K_WORK_DEFINE(work, work_handler) \
4304 struct k_work work = Z_WORK_INITIALIZER(work_handler)
4353 struct k_work_poll *work,
4448#ifdef CONFIG_OBJ_CORE_MSGQ
4457#define Z_MSGQ_INITIALIZER(obj, q_buffer, q_msg_size, q_max_msgs) \
4459 .wait_q = Z_WAIT_Q_INIT(&obj.wait_q), \
4460 .msg_size = q_msg_size, \
4461 .max_msgs = q_max_msgs, \
4462 .buffer_start = q_buffer, \
4463 .buffer_end = q_buffer + (q_max_msgs * q_msg_size), \
4464 .read_ptr = q_buffer, \
4465 .write_ptr = q_buffer, \
4467 Z_POLL_EVENT_OBJ_INIT(obj) \
4475#define K_MSGQ_FLAG_ALLOC BIT(0)
4508#define K_MSGQ_DEFINE(q_name, q_msg_size, q_max_msgs, q_align) \
4509 static char __noinit __aligned(q_align) \
4510 _k_fifo_buf_##q_name[(q_max_msgs) * (q_msg_size)]; \
4511 STRUCT_SECTION_ITERABLE(k_msgq, q_name) = \
4512 Z_MSGQ_INITIALIZER(q_name, _k_fifo_buf_##q_name, \
4513 (q_msg_size), (q_max_msgs))
4679static inline uint32_t z_impl_k_msgq_num_free_get(
struct k_msgq *msgq)
4695static inline uint32_t z_impl_k_msgq_num_used_get(
struct k_msgq *msgq)
4725#if (CONFIG_NUM_MBOX_ASYNC_MSGS > 0)
4727 struct k_sem *_async_sem;
4743#ifdef CONFIG_OBJ_CORE_MAILBOX
4751#define Z_MBOX_INITIALIZER(obj) \
4753 .tx_msg_queue = Z_WAIT_Q_INIT(&obj.tx_msg_queue), \
4754 .rx_msg_queue = Z_WAIT_Q_INIT(&obj.rx_msg_queue), \
4770#define K_MBOX_DEFINE(name) \
4771 STRUCT_SECTION_ITERABLE(k_mbox, name) = \
4772 Z_MBOX_INITIALIZER(name) \
4884#ifdef CONFIG_OBJ_CORE_PIPE
4892#define K_PIPE_FLAG_ALLOC BIT(0)
4894#define Z_PIPE_INITIALIZER(obj, pipe_buffer, pipe_buffer_size) \
4896 .buffer = pipe_buffer, \
4897 .size = pipe_buffer_size, \
4903 .readers = Z_WAIT_Q_INIT(&obj.wait_q.readers), \
4904 .writers = Z_WAIT_Q_INIT(&obj.wait_q.writers) \
4906 Z_POLL_EVENT_OBJ_INIT(obj) \
4927#define K_PIPE_DEFINE(name, pipe_buffer_size, pipe_align) \
4928 static unsigned char __noinit __aligned(pipe_align) \
4929 _k_pipe_buf_##name[pipe_buffer_size]; \
4930 STRUCT_SECTION_ITERABLE(k_pipe, name) = \
4931 Z_PIPE_INITIALIZER(name, _k_pipe_buf_##name, pipe_buffer_size)
4995 size_t bytes_to_write,
size_t *bytes_written,
5018 size_t bytes_to_read,
size_t *bytes_read,
5072struct k_mem_slab_info {
5076#ifdef CONFIG_MEM_SLAB_TRACE_MAX_UTILIZATION
5086 struct k_mem_slab_info info;
5090#ifdef CONFIG_OBJ_CORE_MEM_SLAB
5095#define Z_MEM_SLAB_INITIALIZER(_slab, _slab_buffer, _slab_block_size, \
5098 .wait_q = Z_WAIT_Q_INIT(&(_slab).wait_q), \
5100 .buffer = _slab_buffer, \
5101 .free_list = NULL, \
5102 .info = {_slab_num_blocks, _slab_block_size, 0} \
5139#define K_MEM_SLAB_DEFINE(name, slab_block_size, slab_num_blocks, slab_align) \
5140 char __noinit_named(k_mem_slab_buf_##name) \
5141 __aligned(WB_UP(slab_align)) \
5142 _k_mem_slab_buf_##name[(slab_num_blocks) * WB_UP(slab_block_size)]; \
5143 STRUCT_SECTION_ITERABLE(k_mem_slab, name) = \
5144 Z_MEM_SLAB_INITIALIZER(name, _k_mem_slab_buf_##name, \
5145 WB_UP(slab_block_size), slab_num_blocks)
5161#define K_MEM_SLAB_DEFINE_STATIC(name, slab_block_size, slab_num_blocks, slab_align) \
5162 static char __noinit_named(k_mem_slab_buf_##name) \
5163 __aligned(WB_UP(slab_align)) \
5164 _k_mem_slab_buf_##name[(slab_num_blocks) * WB_UP(slab_block_size)]; \
5165 static STRUCT_SECTION_ITERABLE(k_mem_slab, name) = \
5166 Z_MEM_SLAB_INITIALIZER(name, _k_mem_slab_buf_##name, \
5167 WB_UP(slab_block_size), slab_num_blocks)
5191 size_t block_size,
uint32_t num_blocks);
5241 return slab->info.num_used;
5256#ifdef CONFIG_MEM_SLAB_TRACE_MAX_UTILIZATION
5257 return slab->info.max_used;
5276 return slab->info.num_blocks - slab->info.num_used;
5335 size_t bytes) __attribute_nonnull(1);
5399#define Z_HEAP_MIN_SIZE ((sizeof(void *) > 4) ? 56 : 44)
5417#define Z_HEAP_DEFINE_IN_SECT(name, bytes, in_section) \
5420 kheap_##name[MAX(bytes, Z_HEAP_MIN_SIZE)]; \
5421 STRUCT_SECTION_ITERABLE(k_heap, name) = { \
5423 .init_mem = kheap_##name, \
5424 .init_bytes = MAX(bytes, Z_HEAP_MIN_SIZE), \
5442#define K_HEAP_DEFINE(name, bytes) \
5443 Z_HEAP_DEFINE_IN_SECT(name, bytes, \
5444 __noinit_named(kheap_buf_##name))
5460#define K_HEAP_DEFINE_NOCACHE(name, bytes) \
5461 Z_HEAP_DEFINE_IN_SECT(name, bytes, __nocache)
5536#define _INIT_OBJ_POLL_EVENT(obj) do { (obj)->poll_event = NULL; } while (false)
5538#define _INIT_OBJ_POLL_EVENT(obj) do { } while (false)
5542enum _poll_types_bits {
5550 _POLL_TYPE_SEM_AVAILABLE,
5553 _POLL_TYPE_DATA_AVAILABLE,
5556 _POLL_TYPE_MSGQ_DATA_AVAILABLE,
5559 _POLL_TYPE_PIPE_DATA_AVAILABLE,
5564#define Z_POLL_TYPE_BIT(type) (1U << ((type) - 1U))
5567enum _poll_states_bits {
5569 _POLL_STATE_NOT_READY,
5572 _POLL_STATE_SIGNALED,
5575 _POLL_STATE_SEM_AVAILABLE,
5578 _POLL_STATE_DATA_AVAILABLE,
5581 _POLL_STATE_CANCELLED,
5584 _POLL_STATE_MSGQ_DATA_AVAILABLE,
5587 _POLL_STATE_PIPE_DATA_AVAILABLE,
5592#define Z_POLL_STATE_BIT(state) (1U << ((state) - 1U))
5594#define _POLL_EVENT_NUM_UNUSED_BITS \
5598 + _POLL_NUM_STATES \
5614#define K_POLL_TYPE_IGNORE 0
5615#define K_POLL_TYPE_SIGNAL Z_POLL_TYPE_BIT(_POLL_TYPE_SIGNAL)
5616#define K_POLL_TYPE_SEM_AVAILABLE Z_POLL_TYPE_BIT(_POLL_TYPE_SEM_AVAILABLE)
5617#define K_POLL_TYPE_DATA_AVAILABLE Z_POLL_TYPE_BIT(_POLL_TYPE_DATA_AVAILABLE)
5618#define K_POLL_TYPE_FIFO_DATA_AVAILABLE K_POLL_TYPE_DATA_AVAILABLE
5619#define K_POLL_TYPE_MSGQ_DATA_AVAILABLE Z_POLL_TYPE_BIT(_POLL_TYPE_MSGQ_DATA_AVAILABLE)
5620#define K_POLL_TYPE_PIPE_DATA_AVAILABLE Z_POLL_TYPE_BIT(_POLL_TYPE_PIPE_DATA_AVAILABLE)
5631#define K_POLL_STATE_NOT_READY 0
5632#define K_POLL_STATE_SIGNALED Z_POLL_STATE_BIT(_POLL_STATE_SIGNALED)
5633#define K_POLL_STATE_SEM_AVAILABLE Z_POLL_STATE_BIT(_POLL_STATE_SEM_AVAILABLE)
5634#define K_POLL_STATE_DATA_AVAILABLE Z_POLL_STATE_BIT(_POLL_STATE_DATA_AVAILABLE)
5635#define K_POLL_STATE_FIFO_DATA_AVAILABLE K_POLL_STATE_DATA_AVAILABLE
5636#define K_POLL_STATE_MSGQ_DATA_AVAILABLE Z_POLL_STATE_BIT(_POLL_STATE_MSGQ_DATA_AVAILABLE)
5637#define K_POLL_STATE_PIPE_DATA_AVAILABLE Z_POLL_STATE_BIT(_POLL_STATE_PIPE_DATA_AVAILABLE)
5638#define K_POLL_STATE_CANCELLED Z_POLL_STATE_BIT(_POLL_STATE_CANCELLED)
5655#define K_POLL_SIGNAL_INITIALIZER(obj) \
5657 .poll_events = SYS_DLIST_STATIC_INIT(&obj.poll_events), \
5701#define K_POLL_EVENT_INITIALIZER(_event_type, _event_mode, _event_obj) \
5704 .type = _event_type, \
5705 .state = K_POLL_STATE_NOT_READY, \
5706 .mode = _event_mode, \
5709 .obj = _event_obj, \
5713#define K_POLL_EVENT_STATIC_INITIALIZER(_event_type, _event_mode, _event_obj, \
5717 .type = _event_type, \
5718 .state = K_POLL_STATE_NOT_READY, \
5719 .mode = _event_mode, \
5722 .obj = _event_obj, \
5742 int mode,
void *obj);
5818 unsigned int *signaled,
int *result);
5900#define z_except_reason(reason) ARCH_EXCEPT(reason)
5903#if !defined(CONFIG_ASSERT_NO_FILE_INFO)
5904#define __EXCEPT_LOC() __ASSERT_PRINT("@ %s:%d\n", __FILE__, __LINE__)
5906#define __EXCEPT_LOC()
5916#define z_except_reason(reason) do { \
5918 z_fatal_error(reason, NULL); \
5937#define k_oops() z_except_reason(K_ERR_KERNEL_OOPS)
5947#define k_panic() z_except_reason(K_ERR_KERNEL_PANIC)
5960void z_timer_expiration_handler(
struct _timeout *timeout);
5973__syscall
void k_str_out(
char *c,
size_t n);
6111#include <syscalls/kernel.h>
static uint32_t arch_k_cycle_get_32(void)
Definition: misc.h:26
static uint64_t arch_k_cycle_get_64(void)
Definition: misc.h:33
struct z_thread_stack_element k_thread_stack_t
Typedef of struct z_thread_stack_element.
Definition: arch_interface.h:45
void(* k_thread_entry_t)(void *p1, void *p2, void *p3)
Thread entry point function type.
Definition: arch_interface.h:47
long atomic_t
Definition: atomic_types.h:15
void arch_cpu_atomic_idle(unsigned int key)
Atomically re-enable interrupts and enter low power mode.
void arch_cpu_idle(void)
Power save idle routine.
static bool atomic_test_bit(const atomic_t *target, int bit)
Atomically test a bit.
Definition: atomic.h:127
static void atomic_clear_bit(atomic_t *target, int bit)
Atomically clear a bit.
Definition: atomic.h:191
static bool atomic_test_and_set_bit(atomic_t *target, int bit)
Atomically set a bit.
Definition: atomic.h:170
static uint32_t k_cycle_get_32(void)
Read the hardware clock.
Definition: kernel.h:1820
#define K_NO_WAIT
Generate null timeout delay.
Definition: kernel.h:1253
int64_t k_uptime_ticks(void)
Get system uptime, in system ticks.
static uint32_t k_uptime_get_32(void)
Get system uptime (32-bit version).
Definition: kernel.h:1772
uint32_t k_ticks_t
Tick precision used in timeout APIs.
Definition: sys_clock.h:48
static int64_t k_uptime_delta(int64_t *reftime)
Get elapsed time.
Definition: kernel.h:1801
static uint32_t k_uptime_seconds(void)
Get system uptime in seconds.
Definition: kernel.h:1785
static uint64_t k_cycle_get_64(void)
Read the 64-bit hardware clock.
Definition: kernel.h:1835
static int64_t k_uptime_get(void)
Get system uptime.
Definition: kernel.h:1748
int k_condvar_signal(struct k_condvar *condvar)
Signals one thread that is pending on the condition variable.
int k_condvar_wait(struct k_condvar *condvar, struct k_mutex *mutex, k_timeout_t timeout)
Waits on the condition variable releasing the mutex lock.
int k_condvar_init(struct k_condvar *condvar)
Initialize a condition variable.
int k_condvar_broadcast(struct k_condvar *condvar)
Unblock all threads that are pending on the condition variable.
static void k_cpu_idle(void)
Make the CPU idle.
Definition: kernel.h:5866
static void k_cpu_atomic_idle(unsigned int key)
Make the CPU idle in an atomic fashion.
Definition: kernel.h:5885
struct _dnode sys_dnode_t
Doubly-linked list node structure.
Definition: dlist.h:54
struct _dnode sys_dlist_t
Doubly-linked list structure.
Definition: dlist.h:50
uint32_t k_event_wait(struct k_event *event, uint32_t events, bool reset, k_timeout_t timeout)
Wait for any of the specified events.
uint32_t k_event_set_masked(struct k_event *event, uint32_t events, uint32_t events_mask)
Set or clear the events in an event object.
static uint32_t k_event_test(struct k_event *event, uint32_t events_mask)
Test the events currently tracked in the event object.
Definition: kernel.h:2368
uint32_t k_event_set(struct k_event *event, uint32_t events)
Set the events in an event object.
uint32_t k_event_post(struct k_event *event, uint32_t events)
Post one or more events to an event object.
void k_event_init(struct k_event *event)
Initialize an event object.
uint32_t k_event_clear(struct k_event *event, uint32_t events)
Clear the events in an event object.
uint32_t k_event_wait_all(struct k_event *event, uint32_t events, bool reset, k_timeout_t timeout)
Wait for all of the specified events.
struct _sflist sys_sflist_t
Flagged single-linked list structure.
Definition: sflist.h:54
static bool sys_sflist_is_empty(sys_sflist_t *list)
Test if the given list is empty.
Definition: sflist.h:336
int k_float_disable(struct k_thread *thread)
Disable preservation of floating point context information.
int k_float_enable(struct k_thread *thread, unsigned int options)
Enable preservation of floating point context information.
int k_futex_wait(struct k_futex *futex, int expected, k_timeout_t timeout)
Pend the current thread on a futex.
int k_futex_wake(struct k_futex *futex, bool wake_all)
Wake one/all threads pending on a futex.
void * k_heap_alloc(struct k_heap *h, size_t bytes, k_timeout_t timeout)
Allocate memory from a k_heap.
void k_heap_free(struct k_heap *h, void *mem)
Free memory allocated by k_heap_alloc()
void k_free(void *ptr)
Free memory allocated from heap.
void k_heap_init(struct k_heap *h, void *mem, size_t bytes)
Initialize a k_heap.
void * k_malloc(size_t size)
Allocate memory from the heap.
void * k_calloc(size_t nmemb, size_t size)
Allocate memory from heap, array style.
void * k_aligned_alloc(size_t align, size_t size)
Allocate memory from the heap with a specified alignment.
void * k_heap_aligned_alloc(struct k_heap *h, size_t align, size_t bytes, k_timeout_t timeout)
Allocate aligned memory from a k_heap.
bool k_is_in_isr(void)
Determine if code is running at interrupt level.
int k_is_preempt_thread(void)
Determine if code is running in a preemptible thread.
static bool k_is_pre_kernel(void)
Test whether startup is in the before-main-task phase.
Definition: kernel.h:1108
int k_mbox_get(struct k_mbox *mbox, struct k_mbox_msg *rx_msg, void *buffer, k_timeout_t timeout)
Receive a mailbox message.
void k_mbox_data_get(struct k_mbox_msg *rx_msg, void *buffer)
Retrieve mailbox message data into a buffer.
void k_mbox_init(struct k_mbox *mbox)
Initialize a mailbox.
int k_mbox_put(struct k_mbox *mbox, struct k_mbox_msg *tx_msg, k_timeout_t timeout)
Send a mailbox message in a synchronous manner.
void k_mbox_async_put(struct k_mbox *mbox, struct k_mbox_msg *tx_msg, struct k_sem *sem)
Send a mailbox message in an asynchronous manner.
int k_mem_slab_init(struct k_mem_slab *slab, void *buffer, size_t block_size, uint32_t num_blocks)
Initialize a memory slab.
void k_mem_slab_free(struct k_mem_slab *slab, void *mem)
Free memory allocated from a memory slab.
int k_mem_slab_runtime_stats_get(struct k_mem_slab *slab, struct sys_memory_stats *stats)
Get the memory stats for a memory slab.
int k_mem_slab_runtime_stats_reset_max(struct k_mem_slab *slab)
Reset the maximum memory usage for a slab.
int k_mem_slab_alloc(struct k_mem_slab *slab, void **mem, k_timeout_t timeout)
Allocate memory from a memory slab.
static uint32_t k_mem_slab_num_used_get(struct k_mem_slab *slab)
Get the number of used blocks in a memory slab.
Definition: kernel.h:5239
static uint32_t k_mem_slab_max_used_get(struct k_mem_slab *slab)
Get the number of maximum used blocks so far in a memory slab.
Definition: kernel.h:5254
static uint32_t k_mem_slab_num_free_get(struct k_mem_slab *slab)
Get the number of unused blocks in a memory slab.
Definition: kernel.h:5274
int k_msgq_peek(struct k_msgq *msgq, void *data)
Peek/read a message from a message queue.
uint32_t k_msgq_num_used_get(struct k_msgq *msgq)
Get the number of messages in a message queue.
void k_msgq_init(struct k_msgq *msgq, char *buffer, size_t msg_size, uint32_t max_msgs)
Initialize a message queue.
int k_msgq_put(struct k_msgq *msgq, const void *data, k_timeout_t timeout)
Send a message to a message queue.
int k_msgq_peek_at(struct k_msgq *msgq, void *data, uint32_t idx)
Peek/read a message from a message queue at the specified index.
uint32_t k_msgq_num_free_get(struct k_msgq *msgq)
Get the amount of free space in a message queue.
void k_msgq_get_attrs(struct k_msgq *msgq, struct k_msgq_attrs *attrs)
Get basic attributes of a message queue.
void k_msgq_purge(struct k_msgq *msgq)
Purge a message queue.
int k_msgq_alloc_init(struct k_msgq *msgq, size_t msg_size, uint32_t max_msgs)
Initialize a message queue.
int k_msgq_get(struct k_msgq *msgq, void *data, k_timeout_t timeout)
Receive a message from a message queue.
int k_msgq_cleanup(struct k_msgq *msgq)
Release allocated buffer for a queue.
int k_mutex_unlock(struct k_mutex *mutex)
Unlock a mutex.
int k_mutex_init(struct k_mutex *mutex)
Initialize a mutex.
int k_mutex_lock(struct k_mutex *mutex, k_timeout_t timeout)
Lock a mutex.
size_t k_pipe_read_avail(struct k_pipe *pipe)
Query the number of bytes that may be read from pipe.
int k_pipe_alloc_init(struct k_pipe *pipe, size_t size)
Initialize a pipe and allocate a buffer for it.
void k_pipe_flush(struct k_pipe *pipe)
Flush the pipe of write data.
void k_pipe_buffer_flush(struct k_pipe *pipe)
Flush the pipe's internal buffer.
int k_pipe_cleanup(struct k_pipe *pipe)
Release a pipe's allocated buffer.
int k_pipe_get(struct k_pipe *pipe, void *data, size_t bytes_to_read, size_t *bytes_read, size_t min_xfer, k_timeout_t timeout)
Read data from a pipe.
void k_pipe_init(struct k_pipe *pipe, unsigned char *buffer, size_t size)
Initialize a pipe.
size_t k_pipe_write_avail(struct k_pipe *pipe)
Query the number of bytes that may be written to pipe.
int k_pipe_put(struct k_pipe *pipe, const void *data, size_t bytes_to_write, size_t *bytes_written, size_t min_xfer, k_timeout_t timeout)
Write data to a pipe.
void k_poll_signal_reset(struct k_poll_signal *sig)
Reset a poll signal object's state to unsignaled.
k_poll_modes
Definition: kernel.h:5623
void k_poll_signal_check(struct k_poll_signal *sig, unsigned int *signaled, int *result)
Fetch the signaled state and result value of a poll signal.
void k_poll_event_init(struct k_poll_event *event, uint32_t type, int mode, void *obj)
Initialize one struct k_poll_event instance.
int k_poll(struct k_poll_event *events, int num_events, k_timeout_t timeout)
Wait for one or many of multiple poll events to occur.
int k_poll_signal_raise(struct k_poll_signal *sig, int result)
Signal a poll signal object.
void k_poll_signal_init(struct k_poll_signal *sig)
Initialize a poll signal object.
@ K_POLL_MODE_NOTIFY_ONLY
Definition: kernel.h:5625
@ K_POLL_NUM_MODES
Definition: kernel.h:5627
void k_queue_init(struct k_queue *queue)
Initialize a queue.
void * k_queue_get(struct k_queue *queue, k_timeout_t timeout)
Get an element from a queue.
void * k_queue_peek_tail(struct k_queue *queue)
Peek element at the tail of queue.
bool k_queue_unique_append(struct k_queue *queue, void *data)
Append an element to a queue only if it's not present already.
bool k_queue_remove(struct k_queue *queue, void *data)
Remove an element from a queue.
int k_queue_merge_slist(struct k_queue *queue, sys_slist_t *list)
Atomically add a list of elements to a queue.
int32_t k_queue_alloc_append(struct k_queue *queue, void *data)
Append an element to a queue.
void k_queue_cancel_wait(struct k_queue *queue)
Cancel waiting on a queue.
void * k_queue_peek_head(struct k_queue *queue)
Peek element at the head of queue.
void k_queue_prepend(struct k_queue *queue, void *data)
Prepend an element to a queue.
int k_queue_append_list(struct k_queue *queue, void *head, void *tail)
Atomically append a list of elements to a queue.
void k_queue_append(struct k_queue *queue, void *data)
Append an element to the end of a queue.
int32_t k_queue_alloc_prepend(struct k_queue *queue, void *data)
Prepend an element to a queue.
void k_queue_insert(struct k_queue *queue, void *prev, void *data)
Inserts an element to a queue.
int k_queue_is_empty(struct k_queue *queue)
Query a queue to see if it has data available.
void k_sem_reset(struct k_sem *sem)
Resets a semaphore's count to zero.
unsigned int k_sem_count_get(struct k_sem *sem)
Get a semaphore's count.
void k_sem_give(struct k_sem *sem)
Give a semaphore.
int k_sem_take(struct k_sem *sem, k_timeout_t timeout)
Take a semaphore.
int k_sem_init(struct k_sem *sem, unsigned int initial_count, unsigned int limit)
Initialize a semaphore.
struct _slist sys_slist_t
Single-linked list structure.
Definition: slist.h:49
struct _snode sys_snode_t
Single-linked list node structure.
Definition: slist.h:39
int k_stack_pop(struct k_stack *stack, stack_data_t *data, k_timeout_t timeout)
Pop an element from a stack.
void k_stack_init(struct k_stack *stack, stack_data_t *buffer, uint32_t num_entries)
Initialize a stack.
int k_stack_cleanup(struct k_stack *stack)
Release a stack's allocated buffer.
int k_stack_push(struct k_stack *stack, stack_data_t data)
Push an element onto a stack.
int32_t k_stack_alloc_init(struct k_stack *stack, uint32_t num_entries)
Initialize a stack.
#define SYS_PORT_TRACING_TRACKING_FIELD(type)
Field added to kernel objects so they are tracked.
Definition: tracing_macros.h:354
#define IS_ENABLED(config_macro)
Check for macro definition in compiler-visible expressions.
Definition: util_macro.h:124
#define BIT(n)
Unsigned integer with bit position n set (signed in assembly language).
Definition: util_macro.h:44
#define CONTAINER_OF(ptr, type, field)
Get a pointer to a structure containing the element.
Definition: util.h:268
#define EBUSY
Mount device busy.
Definition: errno.h:55
int k_thread_name_copy(k_tid_t thread, char *buf, size_t size)
Copy the thread name into a supplied buffer.
void k_yield(void)
Yield the current thread.
const char * k_thread_state_str(k_tid_t thread_id, char *buf, size_t buf_size)
Get thread state string.
void k_thread_resume(k_tid_t thread)
Resume a suspended thread.
void * k_thread_custom_data_get(void)
Get current thread's custom data.
void k_thread_abort(k_tid_t thread)
Abort a thread.
int k_thread_name_set(k_tid_t thread, const char *str)
Set current thread name.
void k_thread_priority_set(k_tid_t thread, int prio)
Set a thread's priority.
int k_thread_cpu_mask_enable(k_tid_t thread, int cpu)
Enable thread to run on specified CPU.
void k_thread_foreach_unlocked(k_thread_user_cb_t user_cb, void *user_data)
Iterate over all the threads in the system without locking.
bool k_can_yield(void)
Check whether it is possible to yield in the current context.
int k_thread_priority_get(k_tid_t thread)
Get a thread's priority.
static void k_thread_heap_assign(struct k_thread *thread, struct k_heap *heap)
Assign a resource memory pool to a thread.
Definition: kernel.h:394
FUNC_NORETURN void k_thread_user_mode_enter(k_thread_entry_t entry, void *p1, void *p2, void *p3)
Drop a thread's privileges permanently to user mode.
int k_thread_join(struct k_thread *thread, k_timeout_t timeout)
Sleep until a thread exits.
k_ticks_t k_thread_timeout_remaining_ticks(const struct k_thread *thread)
Get time remaining before a thread wakes up, in system ticks.
void k_thread_custom_data_set(void *value)
Set current thread's custom data.
int32_t k_sleep(k_timeout_t timeout)
Put the current thread to sleep.
void k_sched_lock(void)
Lock the scheduler.
static int32_t k_msleep(int32_t ms)
Put the current thread to sleep.
Definition: kernel.h:489
void k_busy_wait(uint32_t usec_to_wait)
Cause the current thread to busy wait.
void k_thread_time_slice_set(struct k_thread *th, int32_t slice_ticks, k_thread_timeslice_fn_t expired, void *data)
Set thread time slice.
void k_thread_suspend(k_tid_t thread)
Suspend a thread.
void k_sched_unlock(void)
Unlock the scheduler.
static __attribute_const__ k_tid_t k_current_get(void)
Get thread ID of the current thread.
Definition: kernel.h:586
int k_thread_cpu_mask_clear(k_tid_t thread)
Sets all CPU enable masks to zero.
void k_sched_time_slice_set(int32_t slice, int prio)
Set time-slicing period and scope.
void k_thread_start(k_tid_t thread)
Start an inactive thread.
int k_thread_cpu_mask_disable(k_tid_t thread, int cpu)
Prevent thread to run on specified CPU.
void k_wakeup(k_tid_t thread)
Wake up a sleeping thread.
int k_thread_stack_free(k_thread_stack_t *stack)
Free a dynamically allocated thread stack.
k_ticks_t k_thread_timeout_expires_ticks(const struct k_thread *thread)
Get time when a thread wakes up, in system ticks.
__attribute_const__ k_tid_t k_sched_current_thread_query(void)
Query thread ID of the current thread.
k_tid_t k_thread_create(struct k_thread *new_thread, k_thread_stack_t *stack, size_t stack_size, k_thread_entry_t entry, void *p1, void *p2, void *p3, int prio, uint32_t options, k_timeout_t delay)
Create a thread.
void k_thread_deadline_set(k_tid_t thread, int deadline)
Set deadline expiration time for scheduler.
const char * k_thread_name_get(k_tid_t thread)
Get thread name.
void k_thread_foreach(k_thread_user_cb_t user_cb, void *user_data)
Iterate over all the threads in the system.
int k_thread_cpu_pin(k_tid_t thread, int cpu)
Pin a thread to a CPU.
int32_t k_usleep(int32_t us)
Put the current thread to sleep with microsecond resolution.
int k_thread_cpu_mask_enable_all(k_tid_t thread)
Sets all CPU enable masks to one.
void(* k_thread_user_cb_t)(const struct k_thread *thread, void *user_data)
Definition: kernel.h:105
k_thread_stack_t * k_thread_stack_alloc(size_t size, int flags)
Dynamically allocate a thread stack.
k_ticks_t k_timer_expires_ticks(const struct k_timer *timer)
Get next expiration time of a timer, in system ticks.
k_ticks_t k_timer_remaining_ticks(const struct k_timer *timer)
Get time remaining before a timer next expires, in system ticks.
void(* k_timer_stop_t)(struct k_timer *timer)
Timer stop function type.
Definition: kernel.h:1529
void * k_timer_user_data_get(const struct k_timer *timer)
Retrieve the user-specific data from a timer.
void k_timer_init(struct k_timer *timer, k_timer_expiry_t expiry_fn, k_timer_stop_t stop_fn)
Initialize a timer.
void(* k_timer_expiry_t)(struct k_timer *timer)
Timer expiry function type.
Definition: kernel.h:1513
void k_timer_start(struct k_timer *timer, k_timeout_t duration, k_timeout_t period)
Start a timer.
static uint32_t k_timer_remaining_get(struct k_timer *timer)
Get time remaining before a timer next expires.
Definition: kernel.h:1672
uint32_t k_timer_status_sync(struct k_timer *timer)
Synchronize thread to timer expiration.
void k_timer_stop(struct k_timer *timer)
Stop a timer.
uint32_t k_timer_status_get(struct k_timer *timer)
Read timer status.
void k_timer_user_data_set(struct k_timer *timer, void *user_data)
Associate user-specific data with a timer.
#define k_ticks_to_ms_floor32(t)
Convert ticks to milliseconds.
Definition: time_units.h:1701
#define k_ticks_to_sec_floor32(t)
Convert ticks to seconds.
Definition: time_units.h:1605
#define k_ticks_to_ms_floor64(t)
Convert ticks to milliseconds.
Definition: time_units.h:1717
int k_work_poll_submit_to_queue(struct k_work_q *work_q, struct k_work_poll *work, struct k_poll_event *events, int num_events, k_timeout_t timeout)
Submit a triggered work item.
static k_tid_t k_work_queue_thread_get(struct k_work_q *queue)
Access the thread that animates a work queue.
Definition: kernel.h:4079
static bool k_work_is_pending(const struct k_work *work)
Test whether a work item is currently pending.
Definition: kernel.h:4050
int k_work_queue_drain(struct k_work_q *queue, bool plug)
Wait until the work queue has drained, optionally plugging it.
static k_ticks_t k_work_delayable_expires_get(const struct k_work_delayable *dwork)
Get the absolute tick count at which a scheduled delayable work will be submitted.
Definition: kernel.h:4067
int k_work_schedule_for_queue(struct k_work_q *queue, struct k_work_delayable *dwork, k_timeout_t delay)
Submit an idle work item to a queue after a delay.
int k_work_delayable_busy_get(const struct k_work_delayable *dwork)
Busy state flags from the delayable work item.
void k_work_init_delayable(struct k_work_delayable *dwork, k_work_handler_t handler)
Initialize a delayable work structure.
int k_work_poll_cancel(struct k_work_poll *work)
Cancel a triggered work item.
void k_work_user_queue_start(struct k_work_user_q *work_q, k_thread_stack_t *stack, size_t stack_size, int prio, const char *name)
Start a workqueue in user mode.
void k_work_poll_init(struct k_work_poll *work, k_work_handler_t handler)
Initialize a triggered work item.
int k_work_cancel(struct k_work *work)
Cancel a work item.
static int k_work_user_submit_to_queue(struct k_work_user_q *work_q, struct k_work_user *work)
Submit a work item to a user mode workqueue.
Definition: kernel.h:4206
int k_work_submit_to_queue(struct k_work_q *queue, struct k_work *work)
Submit a work item to a queue.
static bool k_work_user_is_pending(struct k_work_user *work)
Check if a userspace work item is pending.
Definition: kernel.h:4183
void(* k_work_handler_t)(struct k_work *work)
The signature for a work item handler function.
Definition: kernel.h:3276
int k_work_schedule(struct k_work_delayable *dwork, k_timeout_t delay)
Submit an idle work item to the system work queue after a delay.
static bool k_work_delayable_is_pending(const struct k_work_delayable *dwork)
Test whether a delayed work item is currently pending.
Definition: kernel.h:4061
bool k_work_cancel_delayable_sync(struct k_work_delayable *dwork, struct k_work_sync *sync)
Cancel delayable work and wait.
int k_work_cancel_delayable(struct k_work_delayable *dwork)
Cancel delayable work.
static void k_work_user_init(struct k_work_user *work, k_work_user_handler_t handler)
Initialize a userspace work item.
Definition: kernel.h:4161
int k_work_queue_unplug(struct k_work_q *queue)
Release a work queue to accept new submissions.
int k_work_reschedule(struct k_work_delayable *dwork, k_timeout_t delay)
Reschedule a work item to the system work queue after a delay.
bool k_work_cancel_sync(struct k_work *work, struct k_work_sync *sync)
Cancel a work item and wait for it to complete.
static k_tid_t k_work_user_queue_thread_get(struct k_work_user_q *work_q)
Access the user mode thread that animates a work queue.
Definition: kernel.h:4261
int k_work_busy_get(const struct k_work *work)
Busy state flags from the work item.
static struct k_work_delayable * k_work_delayable_from_work(struct k_work *work)
Get the parent delayable work structure from a work pointer.
Definition: kernel.h:4056
static k_ticks_t k_work_delayable_remaining_get(const struct k_work_delayable *dwork)
Get the number of ticks until a scheduled delayable work will be submitted.
Definition: kernel.h:4073
bool k_work_flush(struct k_work *work, struct k_work_sync *sync)
Wait for last-submitted instance to complete.
int k_work_reschedule_for_queue(struct k_work_q *queue, struct k_work_delayable *dwork, k_timeout_t delay)
Reschedule a work item to a queue after a delay.
int k_work_submit(struct k_work *work)
Submit a work item to the system queue.
bool k_work_flush_delayable(struct k_work_delayable *dwork, struct k_work_sync *sync)
Flush delayable work.
int k_work_poll_submit(struct k_work_poll *work, struct k_poll_event *events, int num_events, k_timeout_t timeout)
Submit a triggered work item to the system workqueue.
void k_work_queue_init(struct k_work_q *queue)
Initialize a work queue structure.
void k_work_queue_start(struct k_work_q *queue, k_thread_stack_t *stack, size_t stack_size, int prio, const struct k_work_queue_config *cfg)
Initialize a work queue.
void k_work_init(struct k_work *work, k_work_handler_t handler)
Initialize a (non-delayable) work structure.
void(* k_work_user_handler_t)(struct k_work_user *work)
Work item handler function type for user work queues.
Definition: kernel.h:4102
@ K_WORK_CANCELING
Flag indicating a work item that is being canceled.
Definition: kernel.h:3851
@ K_WORK_QUEUED
Flag indicating a work item that has been submitted to a queue but has not started running.
Definition: kernel.h:3858
@ K_WORK_DELAYED
Flag indicating a delayed work item that is scheduled for submission to a queue.
Definition: kernel.h:3865
@ K_WORK_RUNNING
Flag indicating a work item that is running under a work queue thread.
Definition: kernel.h:3845
@ K_WORK_FLUSHING
Flag indicating a synced work item that is being flushed.
Definition: kernel.h:3871
void k_sys_runtime_stats_disable(void)
Disable gathering of system runtime statistics.
int k_thread_runtime_stats_enable(k_tid_t thread)
Enable gathering of runtime statistics for specified thread.
void k_sys_runtime_stats_enable(void)
Enable gathering of system runtime statistics.
int k_thread_runtime_stats_get(k_tid_t thread, k_thread_runtime_stats_t *stats)
Get the runtime statistics of a thread.
execution_context_types
Definition: kernel.h:90
@ K_ISR
Definition: kernel.h:91
@ K_COOP_THREAD
Definition: kernel.h:92
@ K_PREEMPT_THREAD
Definition: kernel.h:93
int k_thread_runtime_stats_all_get(k_thread_runtime_stats_t *stats)
Get the runtime statistics of all threads.
int k_thread_runtime_stats_disable(k_tid_t thread)
Disable gathering of runtime statistics for specified thread.
Header files included by kernel.h.
void(* k_thread_timeslice_fn_t)(struct k_thread *thread, void *data)
Definition: kernel_structs.h:307
flags
Definition: parser.h:96
state
Definition: parser_state.h:29
__UINT32_TYPE__ uint32_t
Definition: stdint.h:90
__INTPTR_TYPE__ intptr_t
Definition: stdint.h:104
__INT32_TYPE__ int32_t
Definition: stdint.h:74
__UINT64_TYPE__ uint64_t
Definition: stdint.h:91
__UINT8_TYPE__ uint8_t
Definition: stdint.h:88
__UINTPTR_TYPE__ uintptr_t
Definition: stdint.h:105
__INT64_TYPE__ int64_t
Definition: stdint.h:75
Structure to store initialization entry information.
Definition: init.h:103
Definition: kernel.h:3026
_wait_q_t wait_q
Definition: kernel.h:3027
Event Structure.
Definition: kernel.h:2221
struct k_spinlock lock
Definition: kernel.h:2224
uint32_t events
Definition: kernel.h:2223
_wait_q_t wait_q
Definition: kernel.h:2222
Definition: kernel.h:2388
futex structure
Definition: kernel.h:2142
atomic_t val
Definition: kernel.h:2143
Definition: kernel.h:5315
struct k_spinlock lock
Definition: kernel.h:5318
struct sys_heap heap
Definition: kernel.h:5316
_wait_q_t wait_q
Definition: kernel.h:5317
Definition: kernel.h:2627
Mailbox Message Structure.
Definition: kernel.h:4712
k_tid_t tx_target_thread
target thread id
Definition: kernel.h:4722
void * tx_data
sender's message data buffer
Definition: kernel.h:4718
k_tid_t rx_source_thread
source thread id
Definition: kernel.h:4720
uint32_t info
application-defined information value
Definition: kernel.h:4716
size_t size
size of message (in bytes)
Definition: kernel.h:4714
Mailbox Structure.
Definition: kernel.h:4734
_wait_q_t tx_msg_queue
Transmit messages queue.
Definition: kernel.h:4736
struct k_spinlock lock
Definition: kernel.h:4739
_wait_q_t rx_msg_queue
Receive message queue.
Definition: kernel.h:4738
Memory Domain.
Definition: mem_domain.h:80
Memory Partition.
Definition: mem_domain.h:55
Message Queue Attributes.
Definition: kernel.h:4480
uint32_t used_msgs
Used messages.
Definition: kernel.h:4486
size_t msg_size
Message Size.
Definition: kernel.h:4482
uint32_t max_msgs
Maximal number of messages.
Definition: kernel.h:4484
Message Queue Structure.
Definition: kernel.h:4421
size_t msg_size
Message size.
Definition: kernel.h:4427
char * read_ptr
Read pointer.
Definition: kernel.h:4435
uint32_t used_msgs
Number of used messages.
Definition: kernel.h:4439
char * buffer_end
End of message buffer.
Definition: kernel.h:4433
struct k_spinlock lock
Lock.
Definition: kernel.h:4425
char * write_ptr
Write pointer.
Definition: kernel.h:4437
char * buffer_start
Start of message buffer.
Definition: kernel.h:4431
uint8_t flags
Message queue.
Definition: kernel.h:4444
_wait_q_t wait_q
Message queue wait queue.
Definition: kernel.h:4423
uint32_t max_msgs
Maximal number of messages.
Definition: kernel.h:4429
Mutex Structure.
Definition: kernel.h:2914
uint32_t lock_count
Current lock count.
Definition: kernel.h:2921
_wait_q_t wait_q
Mutex wait queue.
Definition: kernel.h:2916
int owner_orig_prio
Original thread priority.
Definition: kernel.h:2924
struct k_thread * owner
Mutex owner.
Definition: kernel.h:2918
Object core structure.
Definition: obj_core.h:121
Pipe Structure.
Definition: kernel.h:4865
struct k_pipe::@250 wait_q
uint8_t flags
Wait queue.
Definition: kernel.h:4880
_wait_q_t readers
Reader wait queue.
Definition: kernel.h:4874
size_t write_index
Where in buffer to write.
Definition: kernel.h:4870
size_t bytes_used
Definition: kernel.h:4868
struct k_spinlock lock
Synchronization lock.
Definition: kernel.h:4871
_wait_q_t writers
Writer wait queue.
Definition: kernel.h:4875
size_t size
Buffer size.
Definition: kernel.h:4867
unsigned char * buffer
Pipe buffer: may be NULL.
Definition: kernel.h:4866
size_t read_index
Where in buffer to read from.
Definition: kernel.h:4869
Poll Event.
Definition: kernel.h:5665
struct k_poll_signal * signal
Definition: kernel.h:5690
uint32_t tag
optional user-specified tag, opaque, untouched by the API
Definition: kernel.h:5673
struct k_fifo * fifo
Definition: kernel.h:5692
struct k_msgq * msgq
Definition: kernel.h:5694
struct k_queue * queue
Definition: kernel.h:5693
uint32_t unused
unused bits in 32-bit word
Definition: kernel.h:5685
uint32_t type
bitfield of event types (bitwise-ORed K_POLL_TYPE_xxx values)
Definition: kernel.h:5676
struct k_sem * sem
Definition: kernel.h:5691
uint32_t state
bitfield of event states (bitwise-ORed K_POLL_STATE_xxx values)
Definition: kernel.h:5679
uint32_t mode
mode of operation, from enum k_poll_modes
Definition: kernel.h:5682
struct z_poller * poller
PRIVATE - DO NOT TOUCH.
Definition: kernel.h:5670
void * obj
Definition: kernel.h:5689
Definition: kernel.h:5641
sys_dlist_t poll_events
PRIVATE - DO NOT TOUCH.
Definition: kernel.h:5643
int result
custom result value passed to k_poll_signal_raise() if needed
Definition: kernel.h:5652
unsigned int signaled
1 if the event has been signaled, 0 otherwise.
Definition: kernel.h:5649
Definition: kernel.h:1850
struct k_spinlock lock
Definition: kernel.h:1852
_wait_q_t wait_q
Definition: kernel.h:1853
sys_sflist_t data_q
Definition: kernel.h:1851
Kernel Spin Lock.
Definition: spinlock.h:45
Thread Structure.
Definition: thread.h:259
struct _thread_base base
Definition: thread.h:261
struct k_heap * resource_pool
resource pool
Definition: thread.h:349
struct __thread_entry entry
thread entry and parameters description
Definition: thread.h:288
Kernel timeout type.
Definition: sys_clock.h:65
A structure used to submit work after a delay.
Definition: kernel.h:3903
struct _timeout timeout
Definition: kernel.h:3908
struct k_work_q * queue
Definition: kernel.h:3911
struct k_work work
Definition: kernel.h:3905
A structure used to hold work until it can be processed.
Definition: kernel.h:4027
sys_slist_t pending
Definition: kernel.h:4036
_wait_q_t drainq
Definition: kernel.h:4042
_wait_q_t notifyq
Definition: kernel.h:4039
uint32_t flags
Definition: kernel.h:4045
struct k_thread thread
Definition: kernel.h:4029
A structure holding optional configuration items for a work queue.
Definition: kernel.h:3999
const char * name
The name to be given to the work queue thread.
Definition: kernel.h:4004
bool essential
Control whether the work queue thread should be marked as essential thread.
Definition: kernel.h:4023
bool no_yield
Control whether the work queue thread should yield between items.
Definition: kernel.h:4018
A structure holding internal state for a pending synchronous operation on a work item or queue.
Definition: kernel.h:3986
struct z_work_canceller canceller
Definition: kernel.h:3989
struct z_work_flusher flusher
Definition: kernel.h:3988
A structure used to submit work.
Definition: kernel.h:3875
k_work_handler_t handler
Definition: kernel.h:3884
uint32_t flags
Definition: kernel.h:3895
struct k_work_q * queue
Definition: kernel.h:3887
sys_snode_t node
Definition: kernel.h:3881
Definition: sys_heap.h:56
Definition: mem_stats.h:24