ODROID-GO

Overview

ODROID-GO Game Kit is a “Do it yourself” (“DIY”) portable game console by HardKernel. It features a custom ESP32-WROVER with 16 MB flash and it operates from 80 MHz - 240 MHz [1].

The features include the following:

  • Dual core Xtensa microprocessor (LX6), running at 80 - 240MHz

  • 4 MB of PSRAM

  • 802.11b/g/n/e/i

  • Bluetooth v4.2 BR/EDR and BLE

  • 2.4 inch 320x240 TFT LCD

  • Speaker

  • Micro SD card slot

  • Micro USB port (battery charging and USB_UART data communication

  • Input Buttons (Menu, Volume, Select, Start, A, B, Direction Pad)

  • Expansion port (I2C, GPIO, SPI)

  • Cryptographic hardware acceleration (RNG, ECC, RSA, SHA-2, AES)

ODROID-GO

ODROID-Go Game Kit

External Connector

PIN #

Signal Name

ESP32-WROVER Functions

1

GND

GND

2

VSPI.SCK (IO18)

GPIO18, VSPICLK

3

IO12

GPIO12

4

IO15

GPIO15, ADC2_CH3

5

IO4

GPIO4, ADC2_CH0

6

P3V3

3.3 V

7

VSPI.MISO (IO19)

GPIO19, VSPIQ

8

VSPI.MOSI (IO23)

GPIO23, VSPID

9

N.C

N/A

10

VBUS

USB VBUS (5V)

Supported Features

The Zephyr odroid_go board configuration supports the following hardware features:

Interface

Controller

Driver/Component

UART

on-chip

serial port

GPIO

on-chip

gpio

PINMUX

on-chip

pinmux

I2C

on-chip

i2c

SPI

on-chip

spi

System requirements

Prerequisites

Espressif HAL requires WiFi and Bluetooth binary blobs in order work. Run the command below to retrieve those files.

west blobs fetch hal_espressif

Note

It is recommended running the command above after west update.

Building & Flashing

ESP-IDF bootloader

The board is using the ESP-IDF bootloader as the default 2nd stage bootloader. It is build as a subproject at each application build. No further attention is expected from the user.

MCUboot bootloader

User may choose to use MCUboot bootloader instead. In that case the bootloader must be build (and flash) at least once.

There are two options to be used when building an application:

  1. Sysbuild

  2. Manual build

Note

User can select the MCUboot bootloader by adding the following line to the board default configuration file. ` CONFIG_BOOTLOADER_MCUBOOT=y `

Sysbuild

The sysbuild makes possible to build and flash all necessary images needed to bootstrap the board with the ESP32 SoC.

To build the sample application using sysbuild use the command:

west build -b odroid_go --sysbuild samples/hello_world

By default, the ESP32 sysbuild creates bootloader (MCUboot) and application images. But it can be configured to create other kind of images.

Build directory structure created by sysbuild is different from traditional Zephyr build. Output is structured by the domain subdirectories:

build/
├── hello_world
│   └── zephyr
│       ├── zephyr.elf
│       └── zephyr.bin
├── mcuboot
│    └── zephyr
│       ├── zephyr.elf
│       └── zephyr.bin
└── domains.yaml

Note

With --sysbuild option the bootloader will be re-build and re-flash every time the pristine build is used.

For more information about the system build please read the Sysbuild (System build) documentation.

Manual build

During the development cycle, it is intended to build & flash as quickly possible. For that reason, images can be build one at a time using traditional build.

The instructions following are relevant for both manual build and sysbuild. The only difference is the structure of the build directory.

Note

Remember that bootloader (MCUboot) needs to be flash at least once.

Build and flash applications as usual (see Building an Application and Run an Application for more details).

# From the root of the zephyr repository
west build -b odroid_go samples/hello_world

The usual flash target will work with the odroid_go board configuration. Here is an example for the Hello World application.

# From the root of the zephyr repository
west build -b odroid_go samples/hello_world
west flash

Open the serial monitor using the following command:

west espressif monitor

After the board has automatically reset and booted, you should see the following message in the monitor:

***** Booting Zephyr OS vx.x.x-xxx-gxxxxxxxxxxxx *****
Hello World! odroid_go

Debugging

As with much custom hardware, the ESP32 modules require patches to OpenOCD that are not upstreamed yet. Espressif maintains their own fork of the project. The custom OpenOCD can be obtained at OpenOCD ESP32 [2]

The Zephyr SDK uses a bundled version of OpenOCD by default. You can overwrite that behavior by adding the -DOPENOCD=<path/to/bin/openocd> -DOPENOCD_DEFAULT_PATH=<path/to/openocd/share/openocd/scripts> parameter when building.

Here is an example for building the Hello World application.

# From the root of the zephyr repository
west build -b odroid_go samples/hello_world -- -DOPENOCD=<path/to/bin/openocd> -DOPENOCD_DEFAULT_PATH=<path/to/openocd/share/openocd/scripts>
west flash

You can debug an application in the usual way. Here is an example for the Hello World application.

# From the root of the zephyr repository
west build -b odroid_go samples/hello_world
west debug

References