
s13x_nrf5x migration document

Introduction to the s13x_nrf5x migration document

About the document
This document describes how to migrate to new versions of the s130_nrf51 and s132_nrf52 SoftDevices. The s130_nrf51 and s132_nrf52
release notes should be read in conjunction with this document.

For each version, we have the following sections:

"Required changes" describes how an application would have used the previous version of the SoftDevice and how it must now use
this version for the given change.
"New functionality" describes how to use new features and functionality offered by this version of the SoftDevice. Not all newNote:
functionality may be covered; the release notes will contain a full list of new features and functionality.

Each section describes how to migrate to a given version from the previous version. If you are migrating to the current version from the
previous version, follow the instructions in that section. To migrate between versions that are more than one version apart, follow the
migration steps for all intermediate versions in order.

Example: To migrate from version 5.0.0 to version 5.2.0, first follow the instructions to migrate to version 5.1.0 from version 5.0.0, then follow
the instructions to migrate to version 5.2.0 from version 5.1.0.

Copyright (c) Nordic Semiconductor ASA. All rights reserved.

s132_nrf52_5.0.0
This section describes how to migrate to s132_nrf52_5.0.0 from s132_nrf52_4.0.3.

Required changes

SoftDevice flash and RAM usage

The size of the SoftDevice has changed requiring a change to the application project file.

For Keil this means:

Go into the properties of the project and find the Target tab
Change IROM1 Start to . 0x23000

If the project uses a scatter file or linker script instead, they must be updated accordingly.

The RAM usage of the SoftDevice has also changed. should be used to find the APP_RAM_BASE for a particular sd_ble_enable()
configuration.

API renaming and updates

Some APIs are renamed or removed. Applications that use the old API names must be updated:

The timeout source has been removed. Use the existing BLE_GAP_TIMEOUT_SRC_SECURITY_REQUEST BLE_GAP_EVT_AUTH_ST
instead.ATUS {auth_status: BLE_GAP_SEC_STATUS_TIMEOUT}

BLE_GAP_ADV_NONCON_INTERVAL_MIN has been removed because the lower limit for the advertising interval for non-connectable
advertisement has been lowered to .BLE_GAP_ADV_INTERVAL_MIN
The compatibility mode is removed because the SoftDevice now accepts overlappingBLE_GAP_OPT_COMPAT_MODE_2
peer-initiated Link Layer control procedures as a slave.
NRF_ERROR_BUSY will no longer be returned by , , sd_ble_gap_adv_start() sd_ble_gap_scan_start() sd_ble_gap_auth

 and .enticate() sd_ble_gap_connect()
NRF_ERROR_BUSY can now be returned when calling , sd_ble_user_mem_reply() sd_ble_gatts_rw_authorize_reply()

or .sd_ble_gap_sec_params_reply()
NRF_CLOCK_LF_XTAL_ACCURACY renamed to NRF_CLOCK_LF_ACCURACY
nrf_clock_lf_cfg_t struct member renamed to .xtal_accuracy accuracy

 A new event BLE_GAP_EVT_PHY_UPDATE_REQUEST has been added. The application must check for this event and respond to it
 by calling the SV call sd_ble_gap_phy_update(). For more information, please refer to the 2 Mbps PHY support section in New

functionality.

RC Oscillator accuracy

The RC oscillator accuracy can now be set to any of the defined values and there is no default value anymore.NRF_CLOCK_LF_ACCURACY
In other words, the parameter now has the same functionality when used with the RCOSC clockaccuracynrf_clock_lf_cfg_t::
source as with the XTAL clock source. The RC oscillator accuracy should be set to a value appropriate for the chip.

New functionality

2 Mbps PHY support

This SoftDevice supports 2 Mbps PHY data transmission for already established connections. Either the application or the peer can request
switching to 2 Mbps PHY in order to achieve higher throughput. Both sides need to agree on the PHYs before a PHY change can occur. The
application has to respond to the PHY Update procedure when that is initiated by the peer, otherwise the link will be disconnected. This
makes it necessary for the application to pull a new event: . Another event, BLE_GAP_EVT_PHY_UPDATE_REQUEST BLE_GAP_EVT_PHY_UP

 may be raised when a PHY Update procedure is completed but the application is not required to take any actions for this event. DATE,

API Updates

A new SV call, , has been added to request the controller to attempt to change to a new PHY, or tosd_ble_gap_phy_update()
respond to a peer-initiated PHY Update procedure.

Usage

ble_gap_phys_t phys = {BLE_GAP_PHY_2MBPS, BLE_GAP_PHY_2MBPS};
sd_ble_gap_phy_update(conn_handle, &phys);

A new event, , has been added to notify the application that the peer has initiated a PHYBLE_GAP_EVT_PHY_UPDATE_REQUEST
Update procedure, to which the application must respond with its PHY preferences.
A new event, , has been added to notify the application that a self-initiated or peer-initiated PHYBLE_GAP_EVT_PHY_UPDATE
Update procedure has been completed.

Usage

case BLE_GAP_EVT_PHY_UPDATE_REQUEST:
{
 /* The PHYs requested by the peer can be read from the event parameters:
p_ble_evt->evt.gap_evt.params.phy_update_request.peer_preferred_phys.
 * Note that the peer's TX correponds to our RX and vice versa. */

 /* Allow SoftDevice to choose PHY Update Procedure parameters automatically. */
 ble_gap_phys_t phys = {BLE_GAP_PHY_AUTO, BLE_GAP_PHY_AUTO};
 sd_ble_gap_phy_update(p_ble_evt->evt.gap_evt.conn_handle, &phys);
 break;
}
case BLE_GAP_EVT_PHY_UPDATE:
{
 if (p_ble_evt->evt.gap_evt.params.phy_update.status ==
BLE_HCI_STATUS_CODE_SUCCESS)
 {
 /* PHY Update Procedure completed, see
p_ble_evt->evt.gap_evt.params.phy_update.tx_phy and
p_ble_evt->evt.gap_evt.params.phy_update.rx_phy for the currently active PHYs of
the link. */
 }
 break;
}

Connection-Oriented Channels in LE Credit Based Flow Control Mode

The SoftDevice now supports Connection-Oriented Channels in the LE Credit Based Flow Control Mode. To be able to use this feature, the
application has to set an L2CAP connection configuration using the configuration API as shown below.sd_ble_cfg_set()

Usage

/* Set L2CAP Connection Configuration for connection identified by coc_conn_cfg_tag
*/
ble_cfg_t cfg;

memset(&cfg, 0, sizeof(ble_cfg_t));

cfg.conn_cfg.conn_cfg_tag = coc_conn_cfg_tag;
cfg.conn_cfg.params.l2cap_conn_cfg.rx_mps = BLE_L2CAP_MPS_MIN;
cfg.conn_cfg.params.l2cap_conn_cfg.tx_mps = BLE_L2CAP_MPS_MIN;
cfg.conn_cfg.params.l2cap_conn_cfg.rx_queue_size = 5;
cfg.conn_cfg.params.l2cap_conn_cfg.tx_queue_size = 5;
cfg.conn_cfg.params.l2cap_conn_cfg.ch_count = 1;

sd_ble_cfg_set(BLE_CONN_CFG_L2CAP, &cfg, ...);

[...]

/* Enable the BLE Stack */
sd_ble_enable(...);

Setting L2CAP Connection Configuration

The usage of some of the SV calls and events related to this feature is explained below. For the complete list of SV calls and events, please
refer to the API documentation available in ble_l2cap.h.

 A new SV call, , has been added to request the setup of an L2CAP channel, or to respond to a setup requestsd_ble_l2cap_ch_setup()
from a peer.

Usage

uint16_t local_cid = BLE_L2CAP_CID_INVALID;
ble_l2cap_ch_setup_params_t ch_setup_params;

ch_setup_params.le_psm = 0x25;
ch_setup_params.rx_params.rx_mtu = BLE_L2CAP_MTU_MIN;
ch_setup_params.rx_params.rx_mps = BLE_L2CAP_MPS_MIN;
ch_setup_params.rx_params.sdu_buf = NULL;
sd_ble_l2cap_ch_setup(conn_handle, &local_cid, &ch_setup_params);

case BLE_L2CAP_EVT_CH_SETUP_REQUEST:
{
 /* An L2CAP channel setup request has been received from the peer. */

 uint16_t local_cid = p_ble_evt->evt.l2cap_evt.local_cid;
 ble_l2cap_ch_setup_params_t ch_setup_params;

 ch_setup_params.le_psm = 0x25;
 ch_setup_params.rx_params.rx_mtu = BLE_L2CAP_MTU_MIN;
 ch_setup_params.rx_params.rx_mps = BLE_L2CAP_MPS_MIN;
 ch_setup_params.rx_params.sdu_buf = NULL;

 sd_ble_l2cap_ch_setup(p_ble_evt->evt.l2cap_evt.conn_handle, &local_cid,
&ch_setup_params);

 break;
}

The SV call can be used to transmit an SDU (Service Data Unit) on an L2CAP channel. The event sd_ble_l2cap_ch_tx() BLE_L2CAP_
 is generated by the SoftDevice to notify the application that the SDU has been transmitted.EVT_CH_TX

Usage

Creating a new L2CAP Channel

Responding to a L2CAP Channel setup request

ble_data_t sdu_to_send;
uint8_t data[] = "Sample";

sdu_to_send.len = strlen(data);
sdu_to_send.p_data = data;

sd_ble_l2cap_ch_tx(conn_handle, local_cid, &sdu_to_send);

[...]
case BLE_L2CAP_EVT_CH_TX:
 /* The SDU is transmitted. */
 break;

[...]

The SV call be used to provide the SoftDevice with a buffer to receive an SDU from the peer. The event sd_ble_l2cap_ch_rx () shall BLE
 is generated by the SoftDevice to notify the application that an SDU has been received. The application shall not_L2CAP_EVT_CH_RX

change the buffer provided to the SoftDevice before receiving the event.

Usage

[...]

ble_data_t sdu_buf;
uint8_t data[150];

sdu_buf.len = strlen(data);
sdu_buf.p_data = data;

sd_ble_l2cap_ch_rx(conn_handle, local_cid, &sdu_buf));

[...]
case BLE_L2CAP_EVT_CH_RX:
 /* An SDU is received by the SoftDevice from the peer and is available in
p_ble_evt->evt.l2cap_evt.params.rx.sdu_buf */

 break;

[...]

Network Privacy Mode

The SoftDevice now supports the Network Privacy Mode. In Network Privacy Mode, a device will only accept advertising packets from peer
devices that contain private addresses.

Transmitting on an L2CAP Channel

Receiving on an L2CAP Channel

API Updates

A new mode, is added to enable Network Privacy Mode.BLE_GAP_PRIVACY_MODE_NETWORK_PRIVACY,
A new characteristic, (RPA = Resolvable Private Address), is defined to let theBLE_UUID_GAP_CHARACTERISTIC_RPA_ONLY
application add this characteristic to the attribute database.

Usage

Set the privacy settings to network privacy with random private resolvable address:

ble_gap_privacy_params_t privacy_params = {0};
privacy_params.privacy_mode = BLE_GAP_PRIVACY_MODE_NETWORK_PRIVACY;
privacy_params.private_addr_type = BLE_GAP_ADDR_TYPE_RANDOM_PRIVATE_RESOLVABLE;
sd_ble_gap_privacy_set(privacy_params);

Unique string to identify a SoftDevice

The SoftDevice Information Structure now also contains a string, namely the SoftDevice unique string, that can be used to uniquely identify a
version of the SoftDevice (applies also for alpha releases).

A new define SD_UNIQUE_STR_ADDR_GET has been added to retrieve the address of the SoftDevice unique string.
The defines and define the size of the string and itsSD_UNIQUE_STR_SIZE SD_UNIQUE_STR_OFFSET
offset relative to the SoftDevice base address respectively.

Usage

/* Declare a character array that is twice the length of the SoftDevice unique
string.
 * This will be used to store the hexadecimal representation of the SoftDevice
unique string. */
char str[SD_UNIQUE_STR_SIZE * 2];
/* Fetch the address of the SoftDevice unique string. */
const uint8_t * const p_unique_str = SD_UNIQUE_STR_ADDR_GET(MBR_SIZE);

/* Read the SoftDevice unique string into the character array, converting it into
hexadecimal notation. */
for (uint8_t i = 0; i < SD_UNIQUE_STR_SIZE; i++)
{
 sprintf(&str[i * 2], "%02x", p_unique_str[i]);
}
/* The SoftDevice unique string is now available in the character array named str.
*/

Other API additions and changes

The status code BLE_HCI_STATUS_CODE_LMP_ERROR_TRANSACTION_COLLISION indicates that there has been an illegal
collision of LL Control PDUs on air.
A new MBR command has been added to forward all interrupts to another baseSD_MBR_COMMAND_IRQ_FORWARD_ADDRESS_SET

Fetching the SoftDevice unique string

address.
New defines for minimum and maximum values of authenticated payload timeout have been added. See BLE_GAP_AUTH_PAYLOAD

._TIMEOUT
A flag is added to the struct, indicating whether an authentication procedure resulted in anlesc ble_gap_evt_auth_status_t
LE Secure Connection.
The SoftDevice will no longer return on unless the procedure is alreadyNRF_ERROR_BUSY sd_ble_gap_conn_param_update()
in progress.
The new definitions and definNRF_RADIO_MAX_EXTENSION_PROCESSING_TIME_US NRF_RADIO_MIN_EXTENSION_MARGIN_US
e timing constraints the application must take into account when using with theNRF_RADIO_SIGNAL_CALLBACK_ACTION_EXTEND
Radio Timeslot API.

s132_nrf52_4.0.3
This section describes how to migrate to s132_nrf52_4.0.3 from s132_nrf52_3.0.0.

Required changes

SoftDevice RAM usage

The RAM usage of the SoftDevice has changed. should be used to find the for a particularsd_ble_enable() APP_RAM_BASE
configuration.

New configuration API

Configuration parameters passed to have been moved to the SoftDevice configuration API.sd_ble_enable()

API updates

A new SV call is added to set the configuration. This API can be called many times to configure different partssd_ble_cfg_set()
of the BLE stack. All configurations are optional. Configuration parameters not set by this API will take their default values.
The SV call parameter ble_enable_params_t * p_ble_enable_params is removed from . The SV call sd_ble_enable() sd

 must be used instead. The parameters of this call are given in the following table:_ble_cfg_set()

Old API: ble_enable_params_t member New API: in cfg_id sd_ble_cfg_set()

common_enable_params.vs_uuid_count BLE_COMMON_CFG_VS_UUID

common_enable_params.p_conn_bw_counts BLE_CONN_CFG_GAP (*)

gap_enable_params.periph_conn_count
gap_enable_params.central_conn_count

central_sec_countgap_enable_params.

BLE_GAP_CFG_ROLE_COUNT

gap_enable_params.p_device_name BLE_GAP_CFG_DEVICE_NAME

gatt_enable_params BLE_CONN_CFG_GATT (*)

gatts_enable_params.service_changed BLE_GATTS_CFG_SERVICE_CHANGED

gatts_enable_params.attr_tab_size BLE_GATTS_CFG_ATTR_TAB_SIZE

(*) These configurations can be set per link.

Usage

Example pseudo code to set per link ATT_MTU using the new configuration API:

const uint16_t client_rx_mtu = 158;
const uint32_t long_att_conn_cfg_tag = 1;

/* set ATT_MTU for connections identified by long_att_conn_cfg_tag */
ble_cfg_t cfg;
memset(&cfg, 0, sizeof(ble_cfg_t));
cfg.conn_cfg.conn_cfg_tag = long_att_conn_cfg_tag;
cfg.conn_cfg.params.gatt_conn_cfg.att_mtu = client_rx_mtu;
sd_ble_cfg_set(BLE_CONN_CFG_GATT, &cfg, ...);

/* Enable the BLE Stack */
sd_ble_enable(...);

[...]

uint16_t long_att_conn_handle;
/* Establish connection with long_att_conn_cfg_tag */
sd_ble_gap_adv_start(..., long_att_conn_cfg_tag);

[...]

/* Establish connection with BLE_CONN_CFG_TAG_DEFAULT, it will use default ATT_MTU
of 23 bytes */
sd_ble_gap_connect(..., BLE_CONN_CFG_TAG_DEFAULT);

[...]

/* Start ATT_MTU exchange */
sd_ble_gattc_exchange_mtu_request(long_att_conn_handle, client_rx_mtu);

BLE bandwidth configuration

The BLE bandwidth configuration and application packet concept has been changed. Previously, the application could specify a bandwidth
setting, which would result in a given queue size and a correpsonding given radio time allocated. Now the queue sizes and the allocated
radio time have been separated. The application can now configure:

Event length
Write without response queue size
Handle Value Notification queue size

These settings are configurable per link.

Note that now the configured queue sizes are not directly related to on-air bandwidth:

The application can configure one single packet to be queued in the SoftDevice, but still achieve full throughput if the application can
queue packets fast enough during connection events.
Even if the application configures a large number of packets to be queued, not all of them will be sent during a single connection
event if the configured event length is not large enough to send the packets.

API updates

The ble_enable_params_t::common_enable_params.p_conn_bw_counts parameter of the SV call issd_ble_enable()
replaced by the SV call with parameter set to . The following table shows howsd_ble_cfg_set() cfg_id BLE_CONN_CFG_GAP
the old bandwidth configuration corresponds to the new one for the default ATT_MTU:

Old API: BLE_CONN_BWS New API: in ble_gap_conn_cfg_t::event_length sd_ble_cfg_set()

BLE_CONN_BW_LOW BLE_GAP_EVENT_LENGTH_MIN

BLE_CONN_BW_MID BLE_GAP_EVENT_LENGTH_DEFAULT

BLE_CONN_BW_HIGH 6

The bandwidth configuration is further described in the SDS.
The option is removed. Instead, during connection creation, the application should supply the BLE_COMMON_OPT_CONN_BW conn_c

 defined by the parameter in the SV call.fg_tag ble_conn_cfg_t::conn_cfg_tag sd_ble_cfg_set()
A new parameter is added to and SV calls. To create aconn_cfg_tag sd_ble_gap_adv_start() sd_ble_gap_connect()
connection with a default configuration, should be provided in this parameter.BLE_CONN_CFG_TAG_DEFAULT
The event is split on two events: and BLE_EVT_TX_COMPLETE BLE_GATTC_EVT_WRITE_CMD_TX_COMPLETE BLE_GATTS_EVT_H

.VN_TX_COMPLETE
The SV call is removed. Instead, the application can now configure packet counts per link,sd_ble_tx_packet_count_get()
using the SV call with the parameter set to and .sd_ble_cfg_set() cfg_id BLE_CONN_CFG_GATTC BLE_CONN_CFG_GATTS

Usage

Example pseudo code to set configuration that corresponds to the old bandwidth configuration both in throughput andBLE_CONN_BW_HIGH
packet queueing capability:

const uint32_t high_bw_conn_cfg_tag = 1;
ble_cfg_t cfg;

/* configure connections identified by high_bw_conn_cfg_tag */

/* set connection event length */
memset(&cfg, 0, sizeof(ble_cfg_t));
cfg.conn_cfg.conn_cfg_tag = high_bw_conn_cfg_tag;
cfg.conn_cfg.params.gap_conn_cfg.event_length = 6; /* 6 * 1.25 ms = 7.5 ms
corresponds to the old BLE_CONN_BW_HIGH for default ATT_MTU */
cfg.conn_cfg.params.gap_conn_cfg.conn_count = 1; /* application needs one link
with this configuration */
sd_ble_cfg_set(BLE_CONN_CFG_GAP, &cfg, ...);

/* set HVN queue size */
memset(&cfg, 0, sizeof(ble_cfg_t));
cfg.conn_cfg.conn_cfg_tag = high_bw_conn_cfg_tag;
cfg.conn_cfg.params.gatts_conn_cfg.hvn_tx_queue_size = 7; /* application wants to
queue 7 HVNs */
sd_ble_cfg_set(BLE_CONN_CFG_GATTS, &cfg, ...);

/* set WRITE_CMD queue size */
memset(&cfg, 0, sizeof(ble_cfg_t));
cfg.conn_cfg.conn_cfg_tag = high_bw_conn_cfg_tag;
cfg.conn_cfg.params.gattc_conn_cfg.write_cmd_tx_queue_size = 0; /* application is
not going to send WRITE_CMD, so set to 0 to save memory */
sd_ble_cfg_set(BLE_CONN_CFG_GATTC, &cfg, ...);

/* Enable the BLE Stack */
sd_ble_enable(...);

[...]

uint16_t high_bw_conn_handle;
/* Establish connection with high_bw_conn_cfg_tag */
sd_ble_gap_adv_start(..., high_bw_conn_cfg_tag);

Data Length Update Procedure

The application now has to respond to the Data Length Update Procedure when initiated by the peer. See the description of the Data Length
Update Procedure in the New functionality section for more details.

Required changes:

case BLE_GAP_EVT_DATA_LENGTH_UPDATE_REQUEST:
{
 /* Allow SoftDevice to choose Data Length Update Procedure parameters
automatically. */
 sd_ble_gap_data_length_update(p_ble_evt->evt.gap_evt.conn_handle, NULL, NULL);
 break;
}
case BLE_GAP_EVT_DATA_LENGTH_UPDATE:
{
 /* Data Length Update Procedure completed, see
p_ble_evt->evt.gap_evt.params.data_length_update.effective_params for negotiated
parameters. */
 break;
}

Access to registersRAM[x].POWER

SoftDevice APIs are updated to provide access to the registers instead of the deprecated .RAM[x].POWER RAMON/RAMONB

API updates

 SV call is replaced with sd_power_ramon_set() sd_power_ram_power_set().
 SV call is replaced with sd_power_ramon_clr() sd_power_ram_power_clr().
 SV call is replaced with sd_power_ramon_get() sd_power_ram_power_get().

API rename

Some APIs were renamed. Applications that use the old names must be updated.

API updates

 is renamed to BLE_EVTS_PTR_ALIGNMENT .BLE_EVT_PTR_ALIGNMENT
 is renamed to BLE_EVTS_LEN_MAX .BLE_EVT_LEN_MAX

 is renamed to GATT_MTU_SIZE_DEFAULT .BLE_GATT_ATT_MTU_DEFAULT
The GAP option renamed to BLE_GAP_OPT_COMPAT_MODE is .BLE_GAP_OPT_COMPAT_MODE_1

 structure is renamed to ble_gap_opt_compat_mode_t .ble_gap_opt_compat_mode_1_t
 structure is renamed to ::mode_1_enableble_gap_opt_compat_mode_t member ble_gap_opt_compat_mode_1_t::enab

.le
ble_gap_opt_t:: structure is renamed to compat_mode member ble_gap_opt_t:: .compat_mode_1

Proprietary L2CAP API removed

The proprietary API for sending and receiving data over L2CAP is removed.

API updates

The SV calls , and are , sd_ble_l2cap_cid_register() sd_ble_l2cap_cid_unregister() sd_ble_l2cap_tx()
removed.

 event is removed.BLE_L2CAP_EVT_RX
The following defines are removed: , , BLE_L2CAP_MTU_DEF BLE_L2CAP_CID_INVALID , BLE_L2CAP_CID_DYN_BASE BLE_L2CA

.P_CID_DYN_MAX

New functionality

Data Length Update Procedure

The application is given control of the Data Length Update Procedure. The application can initiate the procedure and has to respond when
initiated by the peer.

API updates

A new SV call sd_ble_gap_data_length_update() is added to initiate or respond to a Data Length Update Procedure.
The event is replaced with .BLE_EVT_DATA_LENGTH_CHANGED BLE_GAP_EVT_DATA_LENGTH_UPDATE

 is added to notify that a request has beenA new event BLE_GAP_EVT_DATA_LENGTH_UPDATE_REQUEST Data Length Update
received. must be called by the application after this event has been received to continue sd_ble_gap_data_length_update()
the .Data Length Update Procedure
The GAP option is removed. The SV call should be usedBLE_GAP_OPT_EXT_LEN ()sd_ble_gap_data_length_update
instead.

Usage

The Data Length Update Procedure can be initiated locally or by peer device.
Following is the pseudo code for the case where Data Length Update Procedure is initiated by application:

const uint16_t client_rx_mtu = 247;
const uint32_t long_att_conn_cfg_tag = 1;

/* ATT_MTU must be configured first */
ble_cfg_t cfg;
memset(&cfg, 0, sizeof(ble_cfg_t));
cfg.conn_cfg.conn_cfg_tag = long_att_conn_cfg_tag;
cfg.conn_cfg.params.gatt_conn_cfg.att_mtu = client_rx_mtu;
sd_ble_cfg_set(BLE_CONN_CFG_GATT, &cfg, ...);

/* Enable the BLE Stack */
sd_ble_enable(...);

[...]

uint16_t long_att_conn_handle;
/* Establish connection */
sd_ble_gap_adv_start(..., long_att_conn_cfg_tag);

[...]

/* Start Data Length Update Procedure, can be done without ATT_MTU exchange */
ble_gap_data_length_params_t params = {
 .max_tx_octets = client_rx_mtu + 4,
 .max_rx_octets = client_rx_mtu + 4,
 .max_tx_time_us = BLE_GAP_DATA_LENGTH_AUTO,
 .max_rx_time_us = BLE_GAP_DATA_LENGTH_AUTO
};
sd_ble_gap_data_length_update(long_att_conn_handle, ¶ms, NULL);

[...]

case BLE_GAP_EVT_DATA_LENGTH_UPDATE:
{
 /* Data Length Update Procedure completed, see
p_ble_evt->evt.gap_evt.params.data_length_update.effective_params for negotiated
parameters. */
 break;
}

New compatibility mode

A new compatibility mode is added to enable interoperability with central devices that may initiate version exchange and feature exchange
control procedures in parallel. To enable this mode, use the SV call with the parameter set to sd_ble_opt_set() opt_id BLE_GAP_OPT_

.COMPAT_MODE_2

Slave latency configuration

It is now possible to disable and enable slave latency on an active peripheral link. To disable or re-enable slave latency, use the sd_ble_op
 SV call with the parameter set to .t_set() opt_id BLE_GAP_OPT_SLAVE_LATENCY_DISABLE

Support for high accuracy LFCLK oscillator source

It is now possible to configure the SoftDevice with higher accuracy LFCLK oscillator source. Four new levels are defined:

#define NRF_CLOCK_LF_XTAL_ACCURACY_10_PPM (8) /**< 10 ppm */
#define NRF_CLOCK_LF_XTAL_ACCURACY_5_PPM (9) /**< 5 ppm */
#define NRF_CLOCK_LF_XTAL_ACCURACY_2_PPM (10) /**< 2 ppm */
#define NRF_CLOCK_LF_XTAL_ACCURACY_1_PPM (11) /**< 1 ppm */

RC oscillator: "xtal_accuracy" must be configured

In previous versions of the SoftDevice, the was ignored by the API when RCOSC was selected as the low frequency clockxtal_accuracy
source. The default configuration used was 250 ppm. The RC oscillator accuracy must now be configured by setting nrf_clock_lf_cfg_t

 to to maintain the behavior of previous SoftDevices. The only other valid::xtal_accuracy NRF_CLOCK_LF_XTAL_ACCURACY_250_PPM
configuration is . If the is set to any value other than 250 ppm or 500 ppm,NRF_CLOCK_LF_XTAL_ACCURACY_500_PPM xtal_accuracy
a default configuration of 500 ppm will be applied.

New power failure levels

It is now possible to configure the SoftDevice with all the new power failure levels introduced in NRF52. Levels that are added:

NRF_POWER_THRESHOLD_V17 /**< Set the power failure threshold to 1.7 V. */
NRF_POWER_THRESHOLD_V18 /**< Set the power failure threshold to 1.8 V. */
NRF_POWER_THRESHOLD_V19 /**< Set the power failure threshold to 1.9 V. */
NRF_POWER_THRESHOLD_V20 /**< Set the power failure threshold to 2.0 V. */
NRF_POWER_THRESHOLD_V22 /**< Set the power failure threshold to 2.2 V. */
NRF_POWER_THRESHOLD_V24 /**< Set the power failure threshold to 2.4 V. */
NRF_POWER_THRESHOLD_V26 /**< Set the power failure threshold to 2.6 V. */
NRF_POWER_THRESHOLD_V28 /**< Set the power failure threshold to 2.8 V. */

s132_nrf52_3.0.0
This section describes how to migrate to s132_nrf52_3.0.0 from s132_nrf52_2.0.1.

Required changes

SoftDevice flash and RAM usage

The size of the SoftDevice has changed requiring a change to the application project file.

For Keil this means:

Go into the properties of the project and find the Target tab
Change IROM1 Start to . 0x1F000

If the project uses a scatter file or linker script instead, those must be updated accordingly.

The RAM usage of SoftDevice has also changed. should be used to find the APP_RAM_BASE for a particularsd_ble_enable()
configuration.

LL Privacy

This SoftDevice brings in support for LL Privacy. All applications must be updated to the new Privacy API and whitelist API supporting this
new feature. Refer to the description of LL privacy in the New functionality section for more details.

Required changes:

Enable privacy

/* S132 v2.0 API usage */

ble_gap_addr_t private_addr = {0};
private_addr.addr_type = BLE_GAP_ADDR_TYPE_RANDOM_PRIVATE_RESOLVABLE;
sd_ble_gap_addr_set(BLE_GAP_ADDR_CYCLE_MODE_AUTO, private_addr);

/* S132 v3.0 API usage */

ble_gap_privacy_params_t privacy_params = {0};
privacy_params.privacy_mode = BLE_GAP_PRIVACY_MODE_DEVICE_PRIVACY;
privacy_params.private_addr_type =
BLE_GAP_ADDR_TYPE_RANDOM_PRIVATE_RESOLVABLE;
sd_ble_gap_privacy_set(privacy_params);

Disable privacy

/* S132 v2.0 API usage */

ble_gap_addr_t identity_addr = saved_identity_addr; /* From
sd_ble_gap_addr_get(). */
sd_ble_gap_addr_set(BLE_GAP_ADDR_CYCLE_MODE_NONE, identity_addr);

/* S132 v3.0 API usage */

ble_gap_privacy_params_t privacy_params = {0};
privacy_params.privacy_mode = BLE_GAP_PRIVACY_MODE_OFF;
sd_ble_gap_privacy_set(privacy_params);

Whitelist private addresses

/* S132 v2.0 API usage */

/* Public devices. */
ble_gap_addr_t public_device1 = {
 .addr_type = BLE_GAP_ADDR_TYPE_PUBLIC,
 .addr = {0x01, 0x02, 0x03, 0x04, 0x05, 0x06}};
ble_gap_addr_t public_device2 = {
 .addr_type = BLE_GAP_ADDR_TYPE_PUBLIC,
 .addr = {0x10, 0x20, 0x30, 0x40, 0x50, 0x60}};

/* IRKs of Private devices. */
ble_gap_irk_t irk1 = { .irk = { 0x10, 0x20, 0x30 /*...*/} };
ble_gap_irk_tt irk2 = { .irk = { 0x01, 0x02, 0x03 /*...*/} };

ble_gap_addr_t * whitelist_addrs[2] = {&public_device1, &public_device2};
ble_gap_irk_t * whitelist_irks[2] = {&irk1, &irk2};
ble_gap_whitelist_t whitelist = {
 .pp_addrs = &whitelist_addrs, .addr_count = 2, /* Public devices. */
 .pp_irks = &whitelist_irks, .irk_count = 2, /* Private devices. */};

ble_gap_adv_params_t adv_params = {0};
adv_params.p_whitelist = &whitelist
sd_ble_gap_adv_start(&adv_params);

/* S132 v3.0 API usage */

ble_gap_addr_t public_device1 = {
 .addr_type = BLE_GAP_ADDR_TYPE_PUBLIC,
 .addr = {0x01, 0x02, 0x03, 0x04, 0x05, 0x06},
};
ble_gap_addr_t public_device2 = {
 .addr_type = BLE_GAP_ADDR_TYPE_PUBLIC,
 .addr = {0x10, 0x20, 0x30, 0x40, 0x50, 0x60},
};
 /* Private devices. Matches addresses in identity list. */
ble_gap_addr_t private_device1 = {
 .addr_type = BLE_GAP_ADDR_TYPE_PUBLIC,
 .addr = {0xA1, 0xA2, 0xA3, 0xA4, 0xA5, 0xA6}
};
ble_gap_addr_t private_device2 = {
 .addr_type = BLE_GAP_ADDR_TYPE_PUBLIC,
 .addr = {0x1A, 0x2A, 0x3A, 0x4A, 0x5A, 0x6A},
};
ble_gap_addr_t * whitelist[4] = {
 &public_device1, &public_device2,
 &private_device1, &private_device2,
};
ble_gap_id_key_t identity1 = {
 .id_addr_info = {
 .addr_type = BLE_GAP_ADDR_TYPE_PUBLIC,
 .addr = {0xA1, 0xA2, 0xA3, 0xA4, 0xA5, 0xA6},},
 .id_info ={
 .irk = { 0x10, 0x20, 0x30 /*...*/},}
};
ble_gap_id_key_t identity2 = {
 .id_addr_info = {
 .addr_type = BLE_GAP_ADDR_TYPE_PUBLIC,
 .addr = {0x1A, 0x2A, 0x3A, 0x4A, 0x5A, 0x6A},},
 .id_info = {
 .irk = { 0x01, 0x02, 0x03 /*...*/},}
};

ble_gap_id_key_t * identities[2] = { &identity1, &identity2 };
sd_ble_gap_device_identities_set(&identities, NULL /* Don't use local IRKs*/,
2);
sd_ble_gap_whitelist_set(&whitelist, 4);
ble_gap_adv_params_t adv_params = {0};
adv_params.fp = BLE_GAP_ADV_FP_FILTER_BOTH;
sd_ble_gap_adv_start(&adv_params);

Private address information returned in BLE events

/* S132 v2.0 API usage */

/* GAP connection parameter */
ble_gap_evt_connected_t conn_evt;
conn_evt.irk_match; /* Set to true if IRK matched. */
conn_evt.irk_match_idx; /* Set to index into pp_irks in whitelist.*/
conn_evt.peer_addr; /* Set to the private resolvable address of the peer.*/

/* S132 v3.0 API usage */

/* ble_gap_addr_t has been updated.
The events ble_gap_evt_connected_t, ble_gap_evt_adv_report_t
and ble_gap_evt_scan_req_report_t are affected. */
ble_gap_addr_t.addr_id_peer; /* Set to true if IRK matched */
ble_gap_addr_t.addr; /* Set to the identity address of the peer,
 i.e the one in the identity list matching the
 peer IRK.*/

Central connection to peers using private address

/* S132 v2.0 API usage */

/* IRK of the Private device. */
ble_gap_irk_t irk1 = { .irk = { 0x10, 0x20, 0x30 /*...*/} };
ble_gap_irk_t * whitelist_irk[1] = {&irk1};
ble_gap_whitelist_t whitelist = {
 .pp_irks = &whitelist_irk, .irk_count = 1,};

ble_gap_scan_params_t scan_params = {
.selective = true, p_whitelist = &whitelist};
sd_ble_gap_connect(NULL, &scan_params, &conn_params);

/* S132 v3.0 API usage */

ble_gap_addr_t peer_addr = {
 .addr_id_peer = 1;
 .addr_type = BLE_GAP_ADDR_TYPE_PUBLIC;
 .addr = {0x1A, 0x2A, 0x3A, 0x4A, 0x5A, 0x6A};
}
sd_ble_gap_connect(&peer_addr, &scan_params, &conn_params);

LE Ping

The LE ping feature is now supported by the SoftDevice. A new timeout source has been added.BLE_GAP_TIMEOUT_SRC_AUTH_PAYLOAD
All applications must handle this event from the SoftDevice according to the API documentation. Refer to the description of LE Ping in the
New functionality section for more details.

Required changes:

/* S132 v3.0 API usage */

/* Ignore the authenticated payload timeout event */
case BLE_GAP_TIMEOUT_SRC_AUTH_PAYLOAD:
 break;

Configurable ATT_MTU

The feature of configurable ATT_MTU is now supported by the SoftDevice. A new event hasBLE_GATTS_EVT_EXCHANGE_MTU_REQUEST
been added. All applications must handle this event from the SoftDevice according to the API documentation. Refer to the description of
configurable ATT_MTU in the New functionality section for more details.

Required changes:

/* S132 v3.0 API usage */

/* Respond with default ATT_MTU, if peer initiates an ATT_MTU exchange procedure.
*/
case BLE_GATTS_EVT_EXCHANGE_MTU_REQUEST:
 sd_ble_gatts_exchange_mtu_reply(p_ble_evt->evt.gatts_evt.conn_handle,
GATT_MTU_SIZE_DEFAULT);
 break;

New functionality

Configurable ATT_MTU

The Configurable ATT_MTU feature enables the ATT protocol to use packets longer than the default of 23 bytes. This can be useful for
example to reduce complexity of GATTC and GATTS procedures used to handle longer Characteristic Value, where a single "Write Request"
can be used instead of the whole "Queued Writes" procedure.

API updates

A new BLE initialization structure, , has been added to ble_gatt_enable_params_t ble_enable_params_t for configuring the
maximum ATT_MTU the SoftDevice can send or receive.
A new SV call, sd_ble_gattc_exchange_mtu_request(), has been added for starting an ATT_MTU exchange.
A new SV call, sd_ble_gatts_exchange_mtu_reply(), has been added for setting the ATT_MTU in ATT_MTU response.
A new event, BLE_GATTS_EVT_EXCHANGE_MTU_REQUEST, has been added to to notify that an ATT_MTUBLE_GATTS_EVTS
request has been received. must be called by the application, after this event has beensd_ble_gatts_exchange_mtu_reply()
received, to continue the ATT_MTU exchange procedure.
A new event, BLE_GATTC_EVT_EXCHANGE_MTU_RSP, has been added to to notify that an ATT_MTU responseBLE_GATTC_EVTS
has been received. This event marks the end of the ATT_MTU exchange procedure and indicates the . server ATT_MTU

Usage

ATT_MTU exchange can be initiated locally or by peer device.
HVx and service changed cannot run while a local client initiated ATT_MTU exchange is active. The SV calls sd_ble_gatts_hvx(

 and will return NRF_ERROR_INVALID_STATE if a) sd_ble_gatts_service_changed() local client initiated ATT_MTU
.exchange is ongoing

Following is the pseudo code for case where ATT_MTU exchange is initiated by application:

ble_enable_params_t enable_params = {0};

/* Set maximum ATT_MTU the SoftDevice can send or receive */
enable_params.gatt_enable_params.att_mtu = 158;

/* Set other BLE Initialization parameters */

/* Enable the BLE Stack */
sd_ble_enable(&enable_params, ...);

[...]

uint16_t conn_handle;
/* Establish connection */

[...]

/* Start ATT_MTU exchange */
sd_ble_gattc_exchange_mtu_request(conn_handle, client_rx_mtu);

[...]

uint16_t effective_att_mtu;
uint16_t server_rx_mtu;
/* Handle the event */
case BLE_GATTC_EVT_EXCHANGE_MTU_RSP:
 server_rx_mtu = p_ble_evt->evt.gattc_evt.params.exchange_mtu_rsp.server_rx_mtu;

 /* New ATT_MTU is now applied to GATT procedures for this connection */
 /*Note
 The SoftDevice sets ATT_MTU to the minimum of:
 - The Client RX MTU value from BLE_GATTS_EVT_EXCHANGE_MTU_REQUEST, and
 - The Server RX MTU value.

 However, the SoftDevice never sets ATT_MTU lower than
GATT_MTU_SIZE_DEFAULT.
 */
 /* Store ATT_MTU for later use */
 effective_att_mtu = MIN(MAX(GATT_MTU_SIZE_DEFAULT, server_rx_mtu)
 , client_rx_mtu
);

LE Ping

The LE Ping feature can be used by the application to configure a link to try to have at least one authenticated packet exchange within a
configurable timeout period. If the peer device does not send an authenticated packet within the timeout, a timeout event is generated to
notify this to the application.

API updates

A new GAP option, , has been added to set the authenticated payload timeout.BLE_GAP_OPT_AUTH_PAYLOAD_TIMEOUT
A new GAP timeout source, , has been added to indicate that the authenticated payloadBLE_GAP_TIMEOUT_SRC_AUTH_PAYLOAD
timer has expired.

Usage

/* Enable the BLE Stack */

[...]

/* Establish connection */

[...]

/* Authenticated payload timer runs with default value.
Set the authenticated payload timeout for the link, if required to be something
else then the default */
gap_opt.auth_payload_timeout.conn_handle = connection_handle;
gap_opt.auth_payload_timeout.auth_payload_timeout = 1000;
gap_opt_set(BLE_GAP_OPT_AUTH_PAYLOAD_TIMEOUT, &gap_opt);

[...]

/* Handle the event */
case BLE_GAP_TIMEOUT_SRC_AUTH_PAYLOAD:
 /* Handling of the event is application dependent. It can be ignored if not used
by application. */
 break;

LE Data Packet Length Extension (DLE)

The LE Data Packet Length Extension feature enables the SoftDevice to use longer packets on the link layer level. Now link layer packets
with up to 251 bytes payload are supported.

API updates

A new GAP option, , has been added to set the maximum Link Layer PDU length to be used in DLE.BLE_GAP_OPT_EXT_LEN
A new event, , has been added to indicate that the Link Layer PDU length has changed.BLE_EVT_DATA_LENGTH_CHANGED

Usage

Default max Link Layer PDU is 27 bytes.
BLE_GAP_OPT_EXT_LEN changes the max length for all future links.
Example pseudo code:

/* Enable the BLE Stack */

[...]

/* Set max Link Layer PDU length, if application wants it to be more than
27bytes */
gap_opt.ext_len.rxtx_max_pdu_payload_size = 54; //Example: set max length to
54bytes
gap_opt_set(BLE_GAP_OPT_EXT_LEN, &gap_opt);

[...]

/* Establish connection */

[...]

/* Handle the event */
case BLE_EVT_DATA_LENGTH_CHANGED:
 /* Handling of the event is application dependent. It can be ignored if not
used by application. */

LL Privacy

The LL Privacy feature provides similar functionality as the privacy in the previous version of the SoftDevice. In addition, it supports new use
cases like enabling privacy for directed advertising and advanced filter policy for scanning.

API updates

New SV calls, and , are added to set and get the privacy settings. sd_ble_gap_privacy_set() sd_ble_gap_privacy_get()
 is defined to be used with these calls.ble_gap_privacy_params_t

The GAP option is removed. The SV calls and BLE_GAP_OPT_PRIVACY sd_ble_gap_privacy_set() sd_ble_gap_privacy_
 should be used instead.get()

A new GAP characteristic, , has been added for Central Address Resolution.BLE_UUID_GAP_CHARACTERISTIC_CAR
The SV calls and have been renamed to sd_ble_gap_address_set () sd_ble_gap_address_get() sd_ble_gap_addr_se

 and respectively.t() sd_ble_gap_addr_get()
A new SV call, , has been added to set the whitelist. The configured whitelist is shared among allsd_ble_gap_whitelist_set()
BLE roles.
A new SV call, , has been added to set the identity list. The configured identity list issd_ble_gap_device_identities_set()
shared among all BLE roles.
New definitions, and , have been added.BLE_GAP_PRIVACY_MODE_OFF BLE_GAP_PRIVACY_MODE_DEVICE_PRIVACY
Two new GAP error codes, and BLE_ERROR_GAP_DEVICE_IDENTITIES_IN_USE BLE_ERROR_GAP_DEVICE_IDENTITIES_DUP

, have been added.LICATE
Address cycling, and , is removed from GAP API BLE_GAP_ADDR_CYCLE_MODE_NONE BLE_GAP_ADDR_CYCLE_MODE_AUTO sd_bl

. Address will always cycle if privacy is enabled by .e_gap_addr_set() sd_ble_gap_privacy_set()
New definitions, and BLE_GAP_DEFAULT_PRIVATE_ADDR_CYCLE_INTERVAL_S BLE_GAP_MAX_PRIVATE_ADDR_CYCLE_INTER

, have been added for address cycle intervals.VAL_S
BLE_GAP_WHITELIST_IRK_MAX_COUNT is renamed to .BLE_GAP_DEVICE_IDENTITIES_MAX_COUNT
A new field, , has been added in the , which indicates an IRK/identity match of a peer.addr_id_peer ble_gap_addr_type_t
ble_gap_whitelist_t is removed because it is not used anymore. This also means that it is removed from ble_gap_adv_para

 and . is supposed to be used instead for setting the whitelist.ms_t ble_gap_scan_params_t sd_ble_gap_whitelist_set()
ble_gap_scan_params_t is updated. " " field has been added to enable extended scanner filter policies.adv_dir_report
ble_gap_evt_connected_t is updated. " ", " " and " " fields are removed. "own address irk_match irk_match_index irk_ma

" is now given by " " fileld in " ".tch addr_id_peer peer_addr
ble_gap_evt_adv_report_t is updated and a new field, " ", has been added to support extended scanner filterdirect_addr
policy.

Usage

Example pseudo code using the new privacy API:

/* Enable the BLE Stack */

[...]

/* Enable privacy */
ble_gap_privacy_params_t privacy_params = {0};
privacy_params.privacy_mode = BLE_GAP_PRIVACY_MODE_DEVICE_PRIVACY;
privacy_params.private_addr_type =
BLE_GAP_ADDR_TYPE_RANDOM_PRIVATE_RESOLVABLE;
privacy_params.private_addr_cycle_s = 0; /* Default cycle period will be used.
*/
privacy_params.p_device_irk = &own_irk;
sd_ble_gap_privacy_set(&privacy_params);

[...]

/* start scanner and get adv_report */

[...]

/* Connect to chosen advertiser(advertiser using private address). */
ble_gap_addr_t peer_addr = {
 .addr_id_peer = 0;
 .addr_type = BLE_GAP_ADDR_TYPE_RANDOM_PRIVATE_RESOLVABLE;
 .addr = {0xCC, 0xBB, 0xAA, 0xAA, 0xBB, 0xCC};
}
sd_ble_gap_connect(&peer_addr, &scan_params, &conn_params);

[...]

/* Perform bonding */

[...]

/* With IRK exchanged, the identity list can be configured to enable address
resolution.*/
ble_gap_id_key_t identity = {
 .id_addr_info = {
 .addr_type = BLE_GAP_ADDR_TYPE_PUBLIC,
 .addr = {0x1A, 0x2A, 0x3A, 0x4A, 0x5A, 0x6A},},
 .id_info = {
 .irk = { 0x01, 0x02, 0x03 /*...*/},}
};
ble_gap_id_key_t * identities[] = { &identity };
sd_ble_gap_identities_set(&identities, NULL, 1);

[...]

/* For all future connections, IRK filtering will be performed. */
ble_gap_addr_t peer_addr = {
 .addr_id_peer = 1;
 .addr_type = BLE_GAP_ADDR_TYPE_PUBLIC,
 .addr = {0x1A, 0x2A, 0x3A, 0x4A, 0x5A, 0x6A}
}
sd_ble_gap_connect(&peer_addr, &scan_params, &conn_params);

[...]

/* It is also possible to use extended filter policy to perform IRK resolution
on directed adv reports. */
ble_gap_scan_params_t scan_params;
scan_params.adv_dir_report = 1;
sd_ble_gap_scan_start(&scan_params);

[...]

/* Handle the event */
case BLE_GAP_EVT_ADV_REPORT:
 /* Adv report will also be generated for directed advertisements where
 the initiator field is set to a private resolvable address, even if
 the address did not resolve to an entry in the device identity list.*/
 if (ble_evt->adv_report.type == BLE_GAP_ADV_TYPE_ADV_DIRECT_IND)
 {
 if (ble_evt->adv_report.direct_addr.addr_type ==
 BLE_GAP_ADDR_TYPE_RANDOM_PRIVATE_RESOLVABLE)
 {
 // The initiator address is not resolved
 }
 else
 {
 // The initiator address is resolved

 }
 }

Connection Event Length Extension

This feature can be used to dynamically extend the connection event length when possible to send extra packets compared to the configured
bandwidth in a connection interval.

API updates

A new option, , has been added to for enabling/disabling of this feature. BLE_COMMON_OPT_CONN_EVT_EXT BLE_COMMON_OPTS

Usage

This feature of dynamic extension of connection event length is disabled by default.
The option can be used to enable/disable this feature. This will result in enabling/disabling thisBLE_COMMON_OPT_CONN_EVT_EXT
feature for all currently active links and also for all future links.

Full length device name

The maximum possible length of the device name has been increased, and it is now possible to set a device name up to 248 bytes.

API updates

A new parameter, , has been added to for setting full length device name.ble_gap_device_name_t sd_ble_enable()

Usage

Example pseudo code:

ble_enable_params_t enable_params = {0};

/* Set the device name, if application wants to set anything longer than
BLE_GAP_DEVNAME_DEFAULT_LEN */
ble_gap_device_name_t device_name = {0};
uint8_t device_name_buff[BLE_GAP_DEVNAME_MAX_LEN] = "My very long exciting
application name";
device_name.vloc = BLE_GATTS_VLOC_STACK; /*Note: Device name will occupy space
in Attribute Table.*/
device_name.p_value = device_name_buff;
device_name.max_len = sizeof(device_name_buff);
device_name.current_len = strlen((char *)device_name_buff);
enable_params.gap_enable_params.p_device_name = &device_name;

/* Set other BLE Initialization parameters */
sd_ble_enable(&enable_params, ...);

[...]

Max BLE event length calculation

The maximum size of a BLE event can now be calculated to optimize the size of event buffer memory.

API updates

A new macro, , has been added to find out the maximum size of BLE events.BLE_EVTS_LEN_MAX

Usage

/* Old API: */

uint8_t evt[sizeof(ble_evt_t) + BLE_L2CAP_MTU_DEF];
uint16_t evt_len = sizeof(evt);

errcode = sd_ble_evt_get(evt, &evt_len);

/* New API: */

uint8_t evt[BLE_EVTS_LEN_MAX(GATT_MTU_SIZE_DEFAULT)];
uint16_t evt_len = sizeof(evt);

errcode = sd_ble_evt_get(evt, &evt_len);

Other miscellaneous updates

 The SoftDevice Information Structure has been updated and new access macros have been added. Note that this these updates
are for Nordic internal use and should not be used by the application.
New access macros for general purpose retention registers have been added.

API diff
A diff of the API changes between versions s132_nrf52_3.0.0 and s132_nrf5x_2.0.1 is provided with this release. Refer to the file s132_nrf5

. 2_3.0.0_API-update.diff

s13x_nrf5x_2.0.1
This section describes how to migrate to s13x_nrf5x_2.0.1 from s130_nrf51_1.0.0.

Required changes

SoftDevice size

The size of the SoftDevice has changed requiring a change to the application project file.

For Keil this means:

Go into the properties of the project and find the Target tab
Change IROM1 Start to (s130) or (s132).0x1B000 0x1C000

If the project uses a scatter file or linker script instead, those must be updated accordingly.

SVC number changes

The SVC numbers in use by the SoftDevice have been changed so the application needs to be recompiled against the new header files.

Fault handling

The SoftDevice has changed the way it handles unrecoverable errors, now known as "faults". SoftDevice assertions were reported to the
application in previous releases, now a wider range of faults has been introduced and a new handling mechanism. The new format for the
fault handler to be supplied to reflects this.sd_softdevice_enable()

The old

typedef void (*softdevice_assertion_handler_t)(uint32_t pc, uint16_t line_number, const uint8_t *
p_file_name);

is now replaced by:

typedef void (*nrf_fault_handler_t)(uint32_t id, uint32_t pc, uint32_t info);

The application code must now provide a fault handler in the above format. The source of the fault is provided in the fault ID parameter ()id
and the value of the program counter at the time of the fault is provided in the program counter parameter () . So far the SoftDevicepc
defines the following fault IDs:

NRF_FAULT_ID_SD_ASSERT: The SoftDevice has triggered an assertion. Record the value of the parameter and make it pc
available to the Nordic support team to start an internal investigation.
(s132 only) : The application has triggered an unallowed memory access. The value of the paramNRF_FAULT_ID_APP_MEMACC pc

eter will contain the address of the instruction that executed the invalid memory access, or the address of the instruction following
. To find out the filename and line number within your application source code that correspond to the you can use thethe violation pc

appropriate tool provided with your toolchain. For example if your linker outputs files in the ELF format you can use the addr2line tool
which is part of the GNU ARM Embedded toolchain for this purpose. Note that you don't need to have compiled with GCC to use
addr2line, and that there are several common filename extensions for ELF files, e.g. .elf, and .axf.

// Syntax
arm-none-eabi-addr2line <pc> -e application.elf

// Example, pc=0x01da6a
$ arm-none-eabi-addr2line 0x01da6a -e app_beacon.elf
C:\dev\app_beacon\src\main.c:34

Please note that as part of this transition from asserts to faults the previously distributed file is no longer part of thesoftdevice_assert.h
public API.

Oscillator configuration

The configuration of the 32 kHz RCOSC calibration in has been made more flexible. It now supports moresd_softdevice_enable()
calibration intervals, and the ability to combine temperature and time triggered calibration.

sd_softdevice_enable(nrf_clock_lf_cfg_t const * p_clock_lf_cfg, nrf_fault_handler_t fault_handler));

// Example configuration equivalent to the old
NRF_CLOCK_LFCLKSRC_RC_250_PPM_TEMP_1000MS_CALIBRATION
nrf_clock_lf_cfg_t rc_cfg = {
 .source = NRF_CLOCK_LF_SRC_RC,
 .rc_ctiv = 4, // Check temperature every 4 * 250ms
 .rc_temp_ctiv = 1, // Only calibrate if temperature has changed.
};

sd_softdevice_enable(&rc_cfg, &app_fault_handler);

// Example configuration equivalent to the old NRF_CLOCK_LFCLKSRC_XTAL_75_PPM
nrf_clock_lf_cfg_t xtal_cfg = {
 .source = NRF_CLOCK_LF_SRC_XTAL,
 .xtal_accuracy = NRF_CLOCK_LF_XTAL_ACCURACY_75_PPM
};

sd_softdevice_enable(&xtal_cfg, &app_fault_handler);

// Recommended configuration for using the RC oscillator with s132 (see nrf_sdm.h
for details)
nrf_clock_lf_cfg_t rc_cfg = {
 .source = NRF_CLOCK_LF_SRC_RC,
 .rc_ctiv = 16, // Check temperature every 4 seconds
 .rc_temp_ctiv = 2, // Calibrate at least every 8 seconds even if the
temperature hasn't changed
};

sd_softdevice_enable(&rc_cfg, &app_fault_handler);

App priorities

The enumeration has been removed. Application developers must use the interrupt priority levels directly instead.NRF_APP_PRIORITIES

For s130 the interrupt priority levels available to the application are: and .1 3

For s132 the interrupt priority levels are: , , and . available to the application 2 3 6 7

SEVONPEND flag and high interrupt priorities

Applications must modify the flag in the register when running in priority level 1 for s130 and priority levels 2 or 3 fornot SEVONPEND SCR
s132.

Type definitions

Type definitions for certain basic types have been removed. The following type definitions must be replaced with :uint8_t

nrf_power_mode_t, , , nrf_power_failure_threshold_t nrf_radio_notification_distance_t nrf_radio_notificatio
n_type_t

and the following must be replaced with :uint32_t

nrf_app_irq_priority_t nrf_power_dcdc_mode_t

MBR size

The macro has been moved to .MBR_SIZE nrf_mbr.h

Changes to the sd_nvic_* API

The sd API functions have changed from being SV calls into the SoftDevice to being static functions implemented in a new header_nvic_*
file, . This header file must be included in all source files that call any API function than begins with . If a projectnrf_nvic.h sd_nvic_
includes in any of its source files, one of them must declare and zero initialize a global instance of in the nrf_nvic.h nrf_nvic_state_t
form:

nrf_nvic_state_t nrf_nvic_state = {0};

Flash protection

The flash protection API now takes 4 parameters, only the first 2 of which are applicable for the s130:

sd_flash_protect(uint32_t block_cfg0, uint32_t block_cfg1, uint32_t block_cfg2, uint32_t block_cfg3);

Radio Timeslot API macro changes

The macros for high frequency clock configuration have been renamed in the Radio Timeslot API:

NRF_RADIO_HFCLK_CFG_DEFAULT and NRF_RADIO_HFCLK_CFG_FORCE_XTAL
are now and NRF_RADIO_HFCLK_CFG_XTAL_GUARANTEED NRF_RADIO_HFCLK_CFG_NO_GUARANTEE

The default is now which guarantees that the high frequency clock source is the crystal forNRF_RADIO_HFCLK_CFG_XTAL_GUARANTEED
the whole duration of the timeslot. This should be the preferred option for events that use the radio or require high timing accuracy.

SoftDevice runtime configuration

The number of Vendor Specific UUIDs, connection count and bandwidth are now configurable on using the newsd_ble_enable()
parameters in the substructures of Those new parameters are listed below:ble_enable_params_t.

vs_uuid_count: The number of Vendor Specific UUID bases that the SoftDevice will reserve space for. Formerly this number was
fixed and set to .BLE_UUID_VS_MAX_COUNT
p_conn_bw_counts: The optional connection bandwidth configuration structure. This determines the amount of memory that the
SoftDevice will reserve for packets. See the bandwidth configuration section for more details.
periph_conn_count: The total amount of concurrent connections as a peripheral that will be available to the application.
central_conn_count: The total amount of concurrent connections as a central that will be available to the application.
central_sec_count: The total amount of concurrent pairing procedures that will be available to the application to be shared
among all connections as a central.

If the maximum number of connections supported by the SoftDevice is exceeded in the call to the SoftDevice will return sd_ble_enable()
.NRF_ERROR_CONN_COUNT

SoftDevice RAM usage

At runtime the IC's RAM is split into 2 regions: The SoftDevice RAM region (between and APP_RAM_BASE-1) and the0x20000000
application RAM region (between APP_RAM_BASE and the call stack). The start address of the application RAM region (APP_RAM_BASE)
is dependent on the configuration provided to the SoftDevice in the call to .sd_ble_enable()

The call has a new parameter. sd_ble_enable()

uint32_t sd_ble_enable(ble_enable_params_t * p_ble_enable_params)
uint32_t sd_ble_enable(ble_enable_params_t * p_ble_enable_params, uint32_t * p_app_ram_base)

The new parameter should be set by the application to APP_RAM_BASE. The SoftDevice will return the minimum*p_app_ram_base
APP_RAM_BASE required by the SoftDevice for the configuration. If the APP_RAM_BASE provided by the application is smaller than the
APP_RAM_BASE returned by the SoftDevice, will return .sd_ble_enable() NRF_ERROR_NO_MEM

: The nRF5 SDK provides definitions for common configurations and several toolchains. You can skip the rest of this section if you planNote
to use the nRF5 SDK examples directly and do not intend to create new configurations.

The application must always provide the current starting address of its RAM area (as defined in the project file, scatter file or linker script) as
the parameter to *p_app_ram_base sd_ble_enable(). Failure to do so might result in the SoftDevice overwriting the application memory

area and/or memory access violations. Most toolchains provide a linker symbol for the starting address of their RAM area, referred to as __L

1.

2.
3.
4.
5.

6.
7.

INKER_APP_RAM_BASE in this documentation.

The following table shows examples of linker symbols that can define The actual value__LINKER_APP_RAM_BASE for different toolchains.

will depend on the project file, scatter file or linker script settings.

Toolchain __LINKER_APP_RAM_BASE

ARMCC/Keil Image$$RW_IRAM1$$Base

IAR __ICFEDIT_region_RAM_start__

GCC __data_start__

The recommended approach to obtaining and maintaining the required APP_RAM_BASE for the application is the following:

In your project file, scatter file or linker script, set the starting address of your application's RAM (APP_RAM_BASE) to at least the
minimum APP_RAM_BASE specified in the release notes.
In your application's source code, set the value of to . *p_app_ram_base __LINKER_APP_RAM_BASE
Set the desired parameters to be provided to .sd_ble_enable()
Compile, link and run the application.
If the amount of memory assigned to the SoftDevice by is large enough to fit the configuration, *p_app_ram_base sd_ble_enabl

 will return , otherwise it will return .e() NRF_SUCCESS NRF_ERROR_NO_MEM
On return of will contain the APP_RAM_BASE required for the given configuration.,sd_ble_enable() *p_app_ram_base
In your project file, scatter file or linker script, update the starting address of your application's RAM (APP_RAM_BASE) to *p_app_
ram_base and recompile the application.from step 6,

Please note that it is possible to run the application with APP_RAM_BASE set higher than the minimum required by the selected configuration.
Doing so will result in an area of memory being unused located between the SoftDevice's and the application's memory areas.

ble_enable_params_t params;
uint32_t retv;
uint32_t app_ram_base;

memset(¶ms, 0x00, sizeof(params));
/* set the number of Vendor Specific UUIDs to 5 */
params.common_enable_params.vs_uuid_count = 5;
/* this application requires 1 connection as a peripheral */
params.gap_enable_params.periph_conn_count = 1;
/* this application requires 3 connections as a central */
params.gap_enable_params.central_conn_count = 3;
/* this application only needs to be able to pair in one central link at a time */
params.gap_enable_params.central_sec_count = 1;
/* we require the Service Changed characteristic */
params.gatts_enable_params.service_changed = 1;
/* the default Attribute Table size is appropriate for our application */
params.gatts_enable_params.attr_tab_size = BLE_GATTS_ATTR_TAB_SIZE_DEFAULT;

/* set app_ram_base to the starting memory address of the application RAM,
 obtained directly from the linker */
app_ram_base = __LINKER_APP_RAM_BASE;
/* enable the BLE Stack */
retv = sd_ble_enable(¶ms, &app_ram_base);
if(retv == NRF_SUCCESS)
{
 /* Verify that __LINKER_APP_RAM_BASE matches the SD calculations */
 if(app_ram_base != __LINKER_APP_RAM_BASE)
 {
 /* The application's starting RAM address is higher than the one required for
this configuration.
 An area of memory will remain unused between the SoftDevice and the
application memory areas.
 To detect this, place a breakpoint here and/or output (app_ram_base)
 through a debug interface.
 */
 }
}
else if(retv == NRF_ERROR_NO_MEM)
{
 /* The application's starting RAM address is lower than the one required for this
configuration.
 This is an unrecoverable error because the SoftDevice and the application
memory areas overlap.
 To detect this, place a breakpoint here and/or output (app_ram_base)
 through a debug interface.
 */
 while(1){}
}

Default Attribute Table size changed

The default Attribute Table size has gone down from 0x600 bytes to 0x580 bytes. If the application is not setting a custom Attribute Table

Enabling the BLE Stack

size and it is filling it completely, it will now need to configure a larger, non-default memory area size dedicated to it (ble_gatts_enable_p
) in the call to sd_ble_enable(). arams_t::attr_tab_size

(s130 only) CPU and Radio mutual exclusion option removed

The option is no longer part of the SoftDevice API so applications making use of it will need toBLE_COMMON_OPT_RADIO_CPU_MUTEX
remove all code using it. The option is no longer necessary since this version of the SoftDevice is only compatible with IC revision 3 of the
nRF51 series, which no longer requires mutual exclusion between the radio and the CPU during operation.

TX packet management

The user TX packet management has been modified to adapt it to the fact that different connections can now make different packet counts
available to the application, depending on the role and bandwidth configuration. This means that the application now needs to obtain the TX
packet count each connection is established, and needs also to keep an independent variable for the TX packet count of eachafter
connection.

The prototype has been therefore renamed and adapted:

uint32_t sd_ble_tx_buffer_count_get(uint8_t *p_count)
uint32_t sd_ble_tx_packet_count_get(uint16_t conn_handle, uint8_t *p_count)

Here's an example of an application obtaining the TX packet count for a particular connection and storing it in a global variable for later use:

case BLE_GAP_EVT_CONNECTED:
 uint8_t count;
 uint16_t conn_handle = p_ble_evt->evt.gap_evt.conn_handle;
 sd_ble_tx_packet_count_get(conn_handle, &count);
 /* store TX packet count for later use */
 tx_packet_counts[conn_handle] = count;
 break;

TX power setting

The SV call now accepts the following values as the lowest power setting:sd_ble_gap_tx_power_set()

s130: -30dBm
s132: -40dBm

If the application code made use of values different from those in its minimum power output mode it will have to be adapted it to conform with
the changes.

Additional link field in the key distribution bitfield

The bitfield now includes an additional bit. This by the application since it is onlyble_gap_sec_kdist_t link must always be set to 0
intended for use with dual-mode BR/EDR+BLE solutions.

Additional lesc field in the encryption information structure

A new bit has been added to the structure. It is important to initialize this bit correctly when loading stored lesc ble_gap_enc_info_t
security keys, so that the SoftDevice can set the connection's security level accordingly.

Additional fields in the security parameters

Two new fields have been added to :ble_gap_sec_params_t

lesc: This enables LE Secure Connections locally when starting a pairing or bonding procedure. If the application does not wish to
use LE Secure Connections and instead use legacy pairing simply set this bit to 0.
keypress: This enables keypress notifications locally when starting a pairing or bonding procedure. Keypress notifications can be
used whenever the Passkey Entry pairing method is selected, both in legacy pairing or LE Secure Connections.

Both fields need to be initialized to the desired value by applications transitioning to this SoftDevice version.

Security keys identification by locality instead of by GAP role

The security keys included in are no longer identified by GAP role, but rather by associating them with the localble_gap_sec_keyset_t
device (own) or with the remote device (peer):

keys_periphble_gap_sec_keyset_t:: and are now expressed in terms of keys_centralble_gap_sec_keyset_t:: ble
 and _gap_sec_keyset_t::keys_own ble_gap_sec_keyset_t::keys_peer

kdist_periph::ble_gap_sec_params_t and are now expressed in terms of kdist_centralble_gap_sec_params_t:: b
 and le_gap_sec_params_t::kdist_own ble_gap_sec_params_t::kdist_peer

kdist_periph::ble_gap_evt_auth_status_t and are now expressedkdist_central::ble_gap_evt_auth_status_t
in terms of and ble_gap_evt_auth_status_t::kdist_own ble_gap_evt_auth_status_t::kdist_peer

For example, a multi-role application wanting to distribute its own LTK when acting as a peripheral, but only its IRK when acting as a central
and that always accepts IRKs from the peer no matter the role:

/* Connected */
if(own_role == BLE_GAP_ROLE_PERIPH)
{
 sec_params.kdist_own.enc = 1;
}
else /* BLE_GAP_ROLE_CENTRAL */
{
 sec_params.kdist_own.id = 1;
}
sec_params.kdist_peer.id = 1;

Identity key distribution change

When distributing Identity keys during a bonding procedure, the handling of the pointers within the structure hasble_gap_sec_keyset_t
changed in the following manner:

Setting to remains unchanged: the stack will continue to make use ofble_gap_sec_keyset_t::keys_own::p_id_key NULL
the currently set Bluetooth address and IRK and distribute them to the peer, but the application will not receive a copy in its memory
Setting to a valid pointer to a location in the application memory will distributeble_gap_sec_keyset_t::keys_own::p_id_key
the same Bluetooth address and IRK as above (the currently set ones) and also make them available to the application

That means that if the application distributed a custom Bluetooth address and IRK using the following deprecated functionality:

/* Connected */
keyset.keys_own.p_id_key = &app_custom_id_key;
keyset.keys_own.p_id_addr_info = &custom_bdaddr;
sd_ble_gap_sec_params_reply(conn_handle, BLE_GAP_SEC_STATUS_SUCCESS, &sec_params,
&keyset);

it will now have to manually set those before calling :sd_ble_gap_sec_params_reply()

/* Connected */
ble_opt_t opt;
sd_ble_gap_address_set(BLE_GAP_ADDR_CYCLE_MODE_NONE,
&app_custom_id_key.id_addr_info);
opt.gap_opt.privacy.p_irk = &app_custom_id_key.id_info;
opt.gap_opt.privacy.interval_s = APP_ADDR_REFRESH_S;
sd_ble_opt_set(BLE_GAP_OPT_PRIVACY, &opt);
keyset.keys_own.p_id_key = &distributed_id_key;
sd_ble_gap_sec_params_reply(conn_handle, BLE_GAP_SEC_STATUS_SUCCESS, &sec_params,
&keyset);

GATT Server Read/Write events: attribute context removed

The type has been removed from the GATT Server API. The two structures that included an instance of it ble_gatts_attr_context_t
as a member now include instead a instance to identify the attribute:ble_uuid_t

ble_gatts_evt_write_t::context has been replaced by ble_gatts_evt_write_t::uuid
ble_gatts_evt_read_t::context has been replaced by ble_gatts_evt_read_t::uuid

In practical usage most applications store the handles associated with a particular characteristic when populating the Attribute Table.
Calculating the context for each incoming read or write operation was an expensive and time-consuming task, and therefore the field has
been removed and instead replaced by the attribute UUID. The combination of attribute handle and attribute UUID provided in the event
structure should be enough for the application to identify the attribute within the set that has been previously populated.

GATT Server Authorizable Write Commands

Whenever the application enables write authorization for a characteristic value or a descriptor in the Attribute Table (ble_gatts_attr_md_
), all incoming write operations will now require application authorization. In particular this now includes Write Commands (alsot::wr_auth

called Write Without Response) which will arrive in the same event form () but with a new field set (BLE_GATTS_EVT_WRITE ble_gatts_ev
) to indicate to the application that the data has not been written into the Attribute Table. Upon handling oft_write_t::auth_required

the event the application can decide whether it wants to write the incoming data to the Attribute Table using sd_ble_gatts_value_set()
or discard it.

case BLE_GATTS_EVT_WRITE:
 uint16_t conn_handle = p_ble_evt->evt.gatts_evt.conn_handle;
 uint16_t attr_handle = p_ble_evt->evt.gatts_evt.params.write.handle;
 uint16_t offset = p_ble_evt->evt.gatts_evt.params.write.offset;
 uint8_t *p_data = p_ble_evt->evt.gatts_evt.params.write.data;
 uint16_t dlen = p_ble_evt->evt.gatts_evt.params.write.len;
 if(p_ble_evt->evt.gatts_evt.params.write.auth_required)
 {
 /* incoming write command on an attribute requiring authorization,
 validate the incoming data pointed to by p_data */
 if(app_data_authorize(p_data, offset, dlen))
 {
 /* the application manually writes the incoming data (p_data) to the
Attribute Table */
 ble_gatts_value_t value;
 value.len = dlen;
 value.offset = offset;
 value.p_value = p_data;
 sd_ble_gatts_value_set(conn_handle, attr_handle, &value);
 }
 }
 break;

GATT Server Write Authorization and peer data

Applications making use of authorization to handle incoming write operations, and in particular Write Requests and app-handled Queued
Writes, will now have to store the incoming data to be provided later to the SoftDevice. Depending on how the application handles the
authorization procedure, this can be done by providing the same pointer contained in the event field, or copying the data into a temporary
storage area if required.

Authorizing directly in the event handler:

Handling incoming authorizable Write Commands

case BLE_GATTS_EVT_RW_AUTHORIZE_REQUEST:
 if(p_ble_evt->evt.gatts_evt.params.authorize_request.type ==
BLE_GATTS_AUTHORIZE_TYPE_WRITE)
 {
 uint16_t conn_handle = p_ble_evt->evt.gatts_evt.conn_handle;
 uint16_t offset =
p_ble_evt->evt.gatts_evt.params.authorize_request.request.write.offset;
 uint16_t dlen =
p_ble_evt->evt.gatts_evt.params.authorize_request.request.write.len;
 uint8_t *p_data =
p_ble_evt->evt.gatts_evt.params.authorize_request.request.write.data;
 /* incoming write command on an attribute requiring authorization, validate the
data */
 if(app_data_authorize(p_data, offset, dlen))
 {
 ble_gatts_rw_authorize_reply_params_t auth_reply;
 auth_reply.type = BLE_GATTS_AUTHORIZE_TYPE_WRITE;
 auth_reply.params.write.gatt_status = BLE_GATT_STATUS_SUCCESS;
 auth_reply.params.write.update = 1;
 auth_reply.params.write.offset = offset;
 auth_reply.params.write.len = dlen;
 /* reuse the same pointer obtained from the event */
 auth_reply.params.write.p_data = p_data;

 sd_ble_gatts_rw_authorize_reply(conn_handle, &auth_reply);
 }
 }
 break;

Authorizing outside of the event handler:

/* global variable storing the authorization data */
struct
{
 uint16_t conn_handle;
 uint16_t offset;
 uint16_t dlen;
 uint8_t data[MAX_DATA];
} auth_write;

[..]

case BLE_GATTS_EVT_RW_AUTHORIZE_REQUEST:
 if(p_ble_evt->evt.gatts_evt.params.authorize_request.type ==
BLE_GATTS_AUTHORIZE_TYPE_WRITE)
 {
 /* store the metadata */
 auth_write.conn_handle = p_ble_evt->evt.gatts_evt.conn_handle;
 auth_write.offset =
p_ble_evt->evt.gatts_evt.params.authorize_request.request.write.offset;
 auth_write.dlen =
p_ble_evt->evt.gatts_evt.params.authorize_request.request.write.len;
 /* store the actual incoming data */
 memcpy(&auth_write.data,
&p_ble_evt->evt.gatts_evt.params.authorize_request.request.write.data,
auth_write.dlen);
 }
 break;

[..]

/* authorization complete */
ble_gatts_rw_authorize_reply_params_t auth_reply;
auth_reply.type = BLE_GATTS_AUTHORIZE_TYPE_WRITE;
auth_reply.params.write.gatt_status = BLE_GATT_STATUS_SUCCESS;
auth_reply.params.write.update = 1;
/* obtain the data */
auth_reply.params.write.offset = auth_write.offset;
auth_reply.params.write.len = auth_write.dlen;
auth_reply.params.write.p_data = auth_write.data;

sd_ble_gatts_rw_authorize_reply(auth_write.conn_handle, &auth_reply);

New functionality

Configurable bandwidth

The connections can now be configured to have low, medium or high bandwidth. This can be specified for both TX and RX independently to
allow for asymmetric bandwidth. This is an optional feature and if the application chooses not to use it the SoftDevice will instead configure
the connections with defaults. The default configuration for connections as a central is (both for TX and RX), and forBLE_CONN_BW_MID
connections as a peripheral it is (both for TX and RX). BLE_CONN_BW_HIGH

When using the configurable bandwidth option the application should have specified beforehand, at BLE stack initialization time, a set of
connection bandwidth configurations that includes the ones that it intends to use through this option. Once a bandwidth configuration for a
particular role is chosen through the SV call, all connections of that role established from that time on will use thesd_ble_opt_set()
chosen configuration until a new one is set.

Additional information about this topic can be found in the SoftDevice Specification at .http://infocenter.nordicsemi.com/

The following table shows an approximate comparison of connections and bandwidth configuration for previous SoftDevices as well as the
the s13x v2.0.1 configured as shown in the example below.

 connections as a peripheral connections as a central

number RX / TX bandwith number RX / TX bandwith

s110 v8.0 1 HIGH / HIGH 0 -

s120 v2.1 (peripheral mode) 1 HIGH / HIGH 0 -

s120 v2.1 (central mode) 0 - 8 LOW / LOW

s130 v1.0 1 MID / MID 3 LOW / LOW

s13x v2.0.1 (default) 0 HIGH / HIGH 0 MID / MID

s13x v2.0.1 (example configuration below) 1 MID / MID 1 HIGH / MID

/* Example for one medium-bandwidth RX and TX connection as a peripheral and
high-bandwidth RX, medium-bandwidth TX connection as a central. */
ble_conn_bw_counts_t conn_bw_counts = {
 .tx_counts = {.high_count = 0, .mid_count = 2, .low_count = 0},
 .rx_counts = {.high_count = 1, .mid_count = 1, .low_count = 0}
};

ble_enable_params_t enable_params = {0};
enable_params.common_enable_params.p_conn_bw_counts = &conn_bw_counts;
enable_params.gap_enable_params.central_conn_count = 1;
enable_params.gap_enable_params.periph_conn_count = 1;

sd_ble_enable(&enable_params, ...);

ble_opt_t ble_opt;

/* Configure bandwidth and connect as a peripheral */
ble_common_opt_conn_bw_t conn_bw = { .role = BLE_GAP_ROLE_PERIPH, .conn_bw = {
.conn_bw_rx = BLE_CONN_BW_MID, .conn_bw_tx = BLE_CONN_BW_MID } };
ble_opt.common_opt.conn_bw = conn_bw;
sd_ble_opt_set(BLE_COMMON_OPT_CONN_BW, &ble_opt);
sd_ble_gap_adv_start(...);

/* Connection established with the configured bandwidth */

/* Configure bandwidth and connect as a central */
ble_common_opt_conn_bw_t conn_bw = { .role = BLE_GAP_ROLE_CENTRAL, .conn_bw = {
.conn_bw_rx = BLE_CONN_BW_HIGH, .conn_bw_tx = BLE_CONN_BW_MID } };
ble_opt.common_opt.conn_bw = conn_bw;
sd_ble_opt_set(BLE_COMMON_OPT_CONN_BW, &ble_opt);
sd_ble_gap_connect(...);

/* Connection established with the configured bandwidth */

Block encryption

The blocking block encryption SV call depends on the hardware encryption block and therefore will require tosd_ecb_block_encrypt()

http://infocenter.nordicsemi.com/

wait for it to complete before it returns to the application. If the user now sets the SEVONPEND bit in the SCR to 1 before calling this
 sleep while the ECB is running instead of entering a busy loop.function, the SoftDevice will

A second SV call has also been introduced to perform multiple block encrypt operations in a single SV call to avoid the context switch
overhead when more than one block of data needs to be encrypted.

uint32_t sd_ecb_blocks_encrypt(uint8_t block_count, nrf_ecb_hal_data_block_t * p_data_blocks);

/* global variable storing the authorization data */

nrf_ecb_hal_data_block_t blocks[ECB_BLOCK_COUNT];

/* intialize data blocks */
for(i = 0; i < ECB_BLOCK_COUNT; i++)
{
 blocks[i].p_key = &app_keys[i];
 blocks[i].p_cleartext = &app_cleartext[i];
 blocks[i].p_ciphertext = &app_dest[i];
}

sd_ecb_blocks_encrypt(ECB_BLOCK_COUNT, blocks);

PA/LNA support

A new BLE option, , and its corresponding option structure, , have been added toBLE_COMMON_OPT_PA_LNA ble_common_opt_pa_lna_t
provide support for power amplifiers and low noise amplifiers. The application is responsible for correctly initializing the option parameter
structure with the required fields that map to the hardware design:

PA and LNA pins and active level
Set and Clear PPI channel IDs
GPIOTE channel ID

sd_ecb_blocks_encrypt() example usage

/* PA/LNA configuration */
ble_opt_t pa_lna_opt = {
 .common_opt = {
 .pa_lna = {
 .pa_cfg = {
 .enable = 1,
 .active_high = 1,
 .gpio_pin = APP_PA_PIN /* GPIO connected to the PA control pin */
 },
 .lna_cfg = {
 .enable = 1,
 .active_high = 1,
 .gpio_pin = APP_LNA_PIN /* GPIO connected to the LNA control pin */
 },
 .ppi_ch_id_set = APP_AMP_PPI_CH_ID_SET, /* PPI channel the app gives the SD
to set the pins */
 .ppi_ch_id_clr = APP_AMP_PPI_CH_ID_CLR, /* PPI channel the app gives the SD
to clear the pins */
 .gpiote_ch_id = APP_AMP_GPIOTE_CH_ID /* GPIOTE channel the app gives the
SD to control the pins */
 }
 }
};

sd_ble_opt_set(BLE_COMMON_OPT_PA_LNA, &pa_lna_opt);

LE Secure Connections

Version 4.2 of the Bluetooth Specification introduced a new mode of operation for the Security Manager Protocol, which enables the use of
Public Key Cryptography for the generation of security keys. This means that applications can now select the mode of operation of the
Security Manager when performing a pairing or bonding procedure:

Legacy pairing: Set the bit in to . lesc ble_gap_sec_params_t 0
LE Secure Connections: Set the bit in to .lesc ble_gap_sec_params_t 1

Please note that, in order for LE Secure Connections to be used, the peer will need to support it. If not, legacy pairing will be used by default.

The SoftDevice implements the Security Manager Protocol and cryptographic toolbox functionality required to enable LE Secure
Connections, but it does include the Elliptic Curve Cryptography (ECC) methods required to generate public keys and shared secrets.not
This means that applications must include their own implementation of ECC. The SoftDevice never requires knowledge of the application's
private key, since it delegates the calculation of the shared secret (DHKey) to the application itself:

ble_gap_sec_keys_t::p_pk (only) is provided by the application and represents the P-256 public key (PK) that matchesown own
the local private key (SK). The key is provided as a part of the structure when calling own ble_gap_sec_keyset_t sd_ble_gap_s

.ec_params_reply()
 BLE_GAP_EVT_LESC_DHKEY_REQUEST is a new event requesting the application to calculate the shared secret, which is the result

of P256(SK , PK). The event structure contains the peer's public key (PKown peer peer) so that the application can start the

calculation of the DHKey. Once the application has completed the calculation it must communicate the result to the SoftDevice by
using the new SV call.sd_ble_gap_lesc_dhkey_reply()

Additional API changes introduced by LE Secure Connections:

ble_gap_evt_passkey_display_t now contains an additional field, , used for the new Numeric Comparisonmatch_request
pairing algorithm
sd_ble_gap_auth_key_reply() now accepts coupled with a pointer toBLE_GAP_AUTH_KEY_TYPE_PASSKEY NULL p_key
indicate a match in the new Numeric Comparison pairing algorithm
sd_ble_gap_lesc_oob_data_get() and have been introduced to support the new LEsd_ble_gap_lesc_oob_data_set()

PA/LNA option usage

Secure Connections OOB pairing method, which is substantially different from the Legacy OOB version

Additional details can be found in the API documentation and the Message Sequence Charts (MSCs) included with the SoftDevice.

Passkey entry keypress notifications

During pairing procedures using the Passkey Entry pairing algorithm (both in Legacy and LE Secure Connections modes) it is now possible
to provide feedback to the peer regarding the keypresses being input by the user. The actual value of the keypresses is never sent over the
air, but the notifications can be sent to provide visual feedback of the keys being pressed.

To enable the application to send keypress notifications to the peer, the following SV call has been introduced:

sd_ble_gap_keypress_notify(uint16_t conn_handle, uint8_t kp_not)

Where kp_not maps to any of the values present in the enumeration. BLE_GAP_KP_NOT_TYPES

/* Pairing procedure using the Passkey Entry algorithm in progress, local device
inputs passkey */

/* User starts entering the passkey */
sd_ble_gap_keypress_notify(conn_handle, BLE_GAP_KP_NOT_TYPE_PASSKEY_START);
/* User inputs digits */
sd_ble_gap_keypress_notify(conn_handle, BLE_GAP_KP_NOT_TYPE_PASSKEY_DIGIT_IN);
sd_ble_gap_keypress_notify(conn_handle, BLE_GAP_KP_NOT_TYPE_PASSKEY_DIGIT_IN);
/* User deletes a digit */
sd_ble_gap_keypress_notify(conn_handle, BLE_GAP_KP_NOT_TYPE_PASSKEY_DIGIT_OUT);
/* User clears the input completely */
sd_ble_gap_keypress_notify(conn_handle, BLE_GAP_KP_NOT_TYPE_PASSKEY_CLEAR);
/* User ends the input procedure */
sd_ble_gap_keypress_notify(conn_handle, BLE_GAP_KP_NOT_TYPE_PASSKEY_END);

Please note that can return if the application calls it too often and the previoussd_ble_gap_keypress_notify() NRF_ERROR_BUSY
keypress notification has not made it over the air to the peer yet. In that case the application should queue the keypresses internally and retry
at a later time.

A new event has also been added to allow the application to receive keypress notifications from the peer:

BLE_GAP_EVT_KEY_PRESSED and its corresponding ble_gap_evt_key_pressed_t

Sending keypress notifications

/* Pairing procedure using the Passkey Entry algorithm in progress, peer device
inputs passkey */

/* handle the event */
case BLE_GAP_EVT_KEY_PRESSED:
 switch(p_ble_evt->evt.gap_evt.params.key_pressed.kp_not)
 {
 case BLE_GAP_KP_NOT_TYPE_PASSKEY_START:
 /* Remote user has started entering the passkey */
 break;
 case BLE_GAP_KP_NOT_TYPE_PASSKEY_DIGIT_IN:
 /* Remote user has input a digits */
 break;
 case BLE_GAP_KP_NOT_TYPE_PASSKEY_DIGIT_OUT:
 /* Remote user has deleted a digit */
 break;
 case BLE_GAP_KP_NOT_TYPE_PASSKEY_CLEAR:
 /* Remote user has cleared the input completely */
 break;
 case BLE_GAP_KP_NOT_TYPE_PASSKEY_END:
 /* Remote user has ended the input procedure */
 break;
 }

Security Mode 1 Level 4

A new security level has been introduced along with support for LE Secure Connections. Security levels are used in GAP and GATT Server
to define the connection's security level and the access requirements for the peer to read and write attributes in the local Attribute Table. The
list of supported security levels is now:

Security Mode 0, Level 0: No access allowed regardless of the connection's security level
Security Mode 1, Level 1: No encryption. The peer can read and write the attribute without restrictions
Security Mode 1, Level 2: Encryption without MITM protection. Access to the attribute requires an encrypted connection (Legacy or
LE Secure Connections) with or without MITM protection
Security Mode 1, Level 3: Encryption with MITM protection. Access to the attribute requires an encrypted connection (Legacy or LE
Secure Connections) with MITM protection
Security Mode 1, Level 4: LESC Encryption with MITM protection. Access to the attribute requires an encrypted connection
(LE Secure Connections only) with MITM protection

To honour the new security level (Security Mode 1, Level 4) encryption must be enabled with an LTK that has been generated during a
pairing or bonding procedure using LE Secure Connections with MITM protection (Numeric Comparison, Passkey Entry or OOB). This is the
highest security level available when defining the access requirements (permissions) of attributes in the local Attribute Table.

A new macro has been made available to set to the new security level:ble_gap_conn_sec_mode_t

BLE_GAP_CONN_SEC_MODE_SET_LESC_ENC_WITH_MITM

An additional Advertising Data type has been added to ble_gap.h

BLE_GAP_AD_TYPE_URI

GATT Client attribute info discovery

A new SV call allows applications to obtain basic attribute information from the peer's Attribute Table:

uint32_t sd_ble_gattc_attr_info_discover(uint16_t conn_handle, ble_gattc_handle_range_t const *
p_handle_range);

Receiving keypress notifications

the matching event identifier and structure are also part of this new feature:

BLE_GATTC_EVT_ATTR_INFO_DISC_RSP
ble_gattc_attr_info_t
ble_gattc_evt_attr_info_disc_rsp_t

This is the only GATT Client function that allows the application to retrieve full 128-bit UUIDs that do need to be part of the list populatednot
with . An example of 128-bit UUID retrieval is shown below.sd_ble_vs_uuid_add()

ble_gattc_handle_range_t handle_range;

/* list all attributes on the peer's Attribute Table */
handle_range.start_handle = 0x0001;
handle_range.end_handle = 0xFFFF;
sd_ble_gattc_attr_info_discover(conn_handle, &handle_range);

[..]

/* handle the event */
case BLE_GATTC_EVT_ATTR_INFO_DISC_RSP:
 /* check if we have 128-bit UUIDs */
 if(p_ble_evt->evt.gattc_evt.params.attr_info_disc_rsp.format ==
BLE_GATTC_ATTR_INFO_FORMAT_128BIT)
 {
 uint16_t attr_handle;
 ble_uuid128_t uuid128;
 /* Obtain the attribute handle and the full 128-bit UUID */
 attr_handle=
p_ble_evt->evt.gattc_evt.params.attr_info_disc_rsp.attr_info[0].handle;
 memcpy(&uuid128,
&p_ble_evt->evt.gattc_evt.params.attr_info_disc_rsp.attr_info[0].info.uuid128.uuid1
28, sizeof(uuid128));
 }
 break;

GATT Server first user attribute handle retrieval

When using the Service Changed characteristic to indicate to the peer that the local Attribute Table structure has changed, it is often useful
to find out at which handle the application-controlled region of the Attribute Table begins. For that specific purpose a new SV call has been
introduced:

uint32_t sd_ble_gatts_initial_user_handle_get(uint16_t *p_handle);

This allows the application to communicate to the peer the exact range of the attributes that require rediscovery.

uint16_t first_attr_handle;

sd_ble_gatts_initial_user_handle_get(&first_attr_handle);
sd_ble_gatts_service_changed(conn_handle, first_attr_handle, last_affected_handle);

128-bit UUID retrieval using sd_ble_gatt_attr_info_discover()

Obtaining the first user handle to indicate a Service Changed

GATT Server local attribute metadata retrieval

The GATT Server module has always allowed applications to retrieve the value of any attribute present in the local Attribute Table by means
of the SV call. Now in addition applications can also retrieve the UUID and metadata of any local attributesd_ble_gatts_value_get()

using the new function:

uint32_t sd_ble_gatts_attr_get(uint16_t handle, ble_uuid_t * p_uuid, ble_gatts_attr_md_t * p_md);

This can be useful in several scenarios, one of which is calculating or verifying the structure of the local Attribute Table regardless of the
current attribute values, focusing instead only in the layout itself

uint16_t attr_handle;
ble_uuid_t uuid;
ble_gatts_attr_md_t attr_md;

/* start at the first valid user attribute handle */
sd_ble_gatts_initial_user_handle_get(&attr_handle);

/* traverse the Attribute Table obtaining the UUID and metadata for each attribute
*/
while(sd_ble_gatts_attr_get(attr_handle, &uuid, &attr_md) == NRF_SUCCESS)
{
 /* use the uuid and attr_md here */
 attr_handle++;
}

GATT Server user memory layout for system attributes

The data format used by the GATT Server to store system attribute data is now fully documented in the API documentation for applications
that need to parse it. The data format is used by the following 2 functions:

sd_ble_gatts_sys_attr_set()
sd_ble_gatts_sys_attr_get()

The format documentation applies to the data pointed to by the pointer in both of the functions above.p_sys_attr_data

Obtaining the UUID and metadata of all local attributes

	s13x_nrf5x migration document

