// SPDX-License-Identifier: GPL-2.0-only /* * Scanning implementation * * Copyright 2003, Jouni Malinen * Copyright 2004, Instant802 Networks, Inc. * Copyright 2005, Devicescape Software, Inc. * Copyright 2006-2007 Jiri Benc * Copyright 2007, Michael Wu * Copyright 2013-2015 Intel Mobile Communications GmbH * Copyright 2016-2017 Intel Deutschland GmbH * Copyright (C) 2018-2021 Intel Corporation */ #include #include "ieee80211_i.h" #include "driver-ops.h" #include #include #include #include #include #include "umac_debugs.h" #include "host_rpu_umac_if.h" #include "core.h" #define IEEE80211_PROBE_DELAY (HZ / 33) #define IEEE80211_CHANNEL_TIME (HZ / 33) #define IEEE80211_PASSIVE_CHANNEL_TIME (HZ / 9) RETENTION_MEM_SECTION_UNINITIALIZED extern unsigned int sleepEnable; RETENTION_MEM_SECTION_UNINITIALIZED struct non_trans_mbssid nontrans_mbssid; #ifndef BSS_OPTIMIZATION int send_bss_to_host(struct cfg80211_registered_device *rdev, struct wireless_dev *wdev, struct cfg80211_bss *cbss); #endif int send_ssid_matched_bss_to_host(struct ieee80211_local *local, struct ieee80211_rx_status *rx_status, struct ieee80211_mgmt *mgmt, size_t len, struct ieee80211_channel *channel, unsigned long ts); void ieee80211_rx_bss_put(struct ieee80211_local *local, struct ieee80211_bss *bss) { if (!bss) return; cfg80211_put_bss(local->hw.wiphy, container_of((void *)bss, struct cfg80211_bss, priv)); } bool is_uapsd_supported(struct ieee802_11_elems *elems) { u8 qos_info; if (elems->wmm_info && elems->wmm_info_len == 7 && elems->wmm_info[5] == 1) qos_info = elems->wmm_info[6]; else if (elems->wmm_param && elems->wmm_param_len == 24 && elems->wmm_param[5] == 1) qos_info = elems->wmm_param[6]; else /* no valid wmm information or parameter element found */ return false; return qos_info & IEEE80211_WMM_IE_AP_QOSINFO_UAPSD; } #ifdef BSS_OPTIMIZATION #define WEP40_MODE 0x01 #define WEP104_MODE 0x05 #define TKIP_MODE 0x02 #define CCMP_MODE 0x04 #define WPA3_SAE 0x08 #define EAP_MODE 0x01 int parse_security_type(struct umac_display_bss *cbss_display, const u8 *rsn, u8 rsn_len) { u8 security_type = rsn[5]; u8 akm_type = rsn[17]; switch (security_type) { case TKIP_MODE: cbss_display->display_bss_info.security_type = NRF_WIFI_WPA; break; case CCMP_MODE: cbss_display->display_bss_info.security_type = NRF_WIFI_WPA2; break; case WEP40_MODE: case WEP104_MODE: cbss_display->display_bss_info.security_type = NRF_WIFI_WEP; break; default: cbss_display->display_bss_info.security_type = NRF_WIFI_OPEN; break; } if (akm_type == WPA3_SAE) { cbss_display->display_bss_info.security_type = NRF_WIFI_WPA3; } if (rsn_len >= 24) { /*Mixed mode case*/ akm_type = rsn[21]; } if (akm_type == EAP_MODE) { cbss_display->display_bss_info.security_type = NRF_WIFI_EAP; } return 0; } int update_multiple_bssid(struct cfg80211_registered_device *rdev, struct umac_display_bss *cbss_display, const u8 *start, size_t len, struct ieee802_11_elems *elems, u8 *transmitter_bssid, u8 *bss_bssid) { const struct element *mbssid_elem, *sub; struct element *sub_temp = NULL; struct umac_display_bss *new_cbss_display = NULL; u8 *nontransmitted_profile; size_t profile_len = 0; nontransmitted_profile = kmalloc(len, GFP_ATOMIC); if (!bss_bssid || !transmitter_bssid) { kfree(nontransmitted_profile); return 0; } mbssid_elem = (struct element *)cfg80211_find_ie(WLAN_EID_MULTIPLE_BSSID, start, len); for_each_element(sub, elems->mbssid_ie + 1, elems->mbssid_ie_len - 1) { u8 new_bssid[ETH_ALEN]; const u8 *nontrans_bssid_index_ie; const u8 *nontrans_capab_ie; const u8 *nontrans_ssid_ie; const u8 *nontrans_rsn_ie; u8 ssid_updated = 1; if (sub->id != 0 || sub->datalen < 4) { continue; /* not a valid BSS profile */ } new_cbss_display = kzalloc(sizeof(struct umac_display_bss), GFP_KERNEL); memcpy(new_cbss_display, cbss_display, sizeof(struct umac_display_bss)); memset(nontransmitted_profile, 0, len); profile_len = cfg80211_merge_profile(start, len, mbssid_elem, sub, nontransmitted_profile, len); /*Generating new bssid's using bssid index subelement and updating*/ nontrans_bssid_index_ie = cfg80211_find_ie(WLAN_EID_MULTI_BSSID_IDX, nontransmitted_profile, profile_len); if (!nontrans_bssid_index_ie || nontrans_bssid_index_ie[1] < 1 || nontrans_bssid_index_ie[2] == 0) { continue; /* Invalid MBSSID Index element */ } cfg80211_gen_new_bssid(transmitter_bssid, elems->mbssid_ie[0], nontrans_bssid_index_ie[2], new_bssid); memcpy(new_cbss_display->display_bss_info.mac_addr, new_bssid, ETH_ALEN); /*Geting non transmitted bssid capabilities*/ nontrans_capab_ie = cfg80211_find_ie(WLAN_EID_NON_TX_BSSID_CAP, nontransmitted_profile, profile_len); if (nontrans_capab_ie) { new_cbss_display->display_bss_info.capability = nontrans_capab_ie[2]; } /*Getting non transmtted ssid & updating */ nontrans_ssid_ie = cfg80211_find_ie(WLAN_EID_SSID, nontransmitted_profile, profile_len); if (nontrans_ssid_ie) { memset(new_cbss_display->display_bss_info.ssid.nrf_wifi_ssid, 0 , NRF_WIFI_MAX_SSID_LEN); memcpy(new_cbss_display->display_bss_info.ssid.nrf_wifi_ssid, nontrans_ssid_ie + 2, nontrans_ssid_ie[1]); new_cbss_display->display_bss_info.ssid.nrf_wifi_ssid_len = nontrans_ssid_ie[1]; } /*Geting non transmitted rsn capabilities*/ nontrans_rsn_ie = cfg80211_find_ie(WLAN_EID_RSN, nontransmitted_profile, profile_len); if (nontrans_rsn_ie) { parse_security_type(new_cbss_display, nontrans_rsn_ie + 2, nontrans_rsn_ie[1]); } list_add_tail(&new_cbss_display->list, &rdev->display_bss_list); } kfree(nontransmitted_profile); return 0; } struct ieee80211_channel * cfg80211_get_bss_channel(struct wiphy *, const u8 *, size_t, struct ieee80211_channel *, enum nl80211_bss_scan_width); void umac_scan_update_display_bss_database (struct ieee80211_local *local, struct ieee80211_rx_status *rx_status, struct ieee80211_mgmt *mgmt, size_t len, struct ieee80211_channel *chan) { struct umac_display_bss *cbss_display = NULL; int found = 0xff; struct ieee802_11_elems elems; size_t baselen; u8 security_type, akm_type, *elements; struct ieee80211_channel *channel; u8 scan_width; s32 signal = 0; size_t ielen = len - offsetof(struct ieee80211_mgmt, u.probe_resp.variable); struct cfg80211_registered_device *rdev; struct wiphy *wiphy; wiphy = local->hw.wiphy; rdev = wiphy_to_rdev(wiphy); /*Checking in internal database*/ list_for_each_entry(cbss_display, &rdev->display_bss_list, list) { found = memcmp(mgmt->bssid, cbss_display->display_bss_info.mac_addr, ETH_ALEN); if (found == 0) break; } if (found != 0) { cbss_display = kzalloc(sizeof(struct umac_display_bss), GFP_KERNEL); } scan_width = NL80211_BSS_CHAN_WIDTH_20; if (rx_status->bw == RATE_INFO_BW_5) scan_width = NL80211_BSS_CHAN_WIDTH_5; else if (rx_status->bw == RATE_INFO_BW_10) scan_width = NL80211_BSS_CHAN_WIDTH_10; channel = cfg80211_get_bss_channel(wiphy, mgmt->u.beacon.variable, ielen, chan, scan_width); if (rx_status->flag & RX_FLAG_NO_SIGNAL_VAL) signal = 0; /* invalid signal indication */ else if (ieee80211_hw_check(&local->hw, SIGNAL_DBM)) signal = rx_status->signal * 100; else if (ieee80211_hw_check(&local->hw, SIGNAL_UNSPEC)) signal = (rx_status->signal * 100) / local->hw.max_signal; if (ieee80211_is_probe_resp(mgmt->frame_control)) { elements = mgmt->u.probe_resp.variable; baselen = offsetof(struct ieee80211_mgmt, u.probe_resp.variable); } else { elements = mgmt->u.beacon.variable; baselen = offsetof(struct ieee80211_mgmt, u.beacon.variable); } if (baselen > len) return; memcpy(cbss_display->display_bss_info.mac_addr, mgmt->bssid, ETH_ALEN); ieee802_11_parse_elems(elements, len - baselen, false, &elems, mgmt->bssid, cbss_display->display_bss_info.mac_addr); memcpy(cbss_display->display_bss_info.ssid.nrf_wifi_ssid, elems.ssid, elems.ssid_len); cbss_display->display_bss_info.ssid.nrf_wifi_ssid_len = elems.ssid_len; cbss_display->display_bss_info.nwk_band = channel->band; cbss_display->display_bss_info.nwk_channel = ieee80211_frequency_to_channel(channel->center_freq); if (cbss_display->display_bss_info.nwk_channel > 35) cbss_display->display_bss_info.protocol_flags = NRF_WIFI_802_11A; else cbss_display->display_bss_info.protocol_flags = NRF_WIFI_802_11G; cbss_display->display_bss_info.security_type = NRF_WIFI_OPEN; if ((elems.he_cap) || (elems.he_operation)) cbss_display->display_bss_info.protocol_flags |= NRF_WIFI_802_11AX; if ((elems.vht_cap_elem) || (elems.vht_operation)) cbss_display->display_bss_info.protocol_flags |= NRF_WIFI_802_11AC; if ((elems.ht_cap_elem) || (elems.ht_operation)) cbss_display->display_bss_info.protocol_flags |= NRF_WIFI_802_11N; if (ieee80211_is_probe_resp(mgmt->frame_control)) { cbss_display->display_bss_info.beacon_interval = le16_to_cpu(mgmt->u.probe_resp.beacon_int); cbss_display->display_bss_info.capability = le16_to_cpu(mgmt->u.probe_resp.capab_info); } else { cbss_display->display_bss_info.beacon_interval = le16_to_cpu(mgmt->u.beacon.beacon_int); cbss_display->display_bss_info.capability = le16_to_cpu(mgmt->u.beacon.capab_info); } if ((cbss_display->display_bss_info.protocol_flags == NRF_WIFI_802_11G) || (cbss_display->display_bss_info.protocol_flags == NRF_WIFI_802_11A)) { if ((cbss_display->display_bss_info.capability & (1 << 4)) && ((!elems.ht_cap_elem) || (!elems.ht_operation))) { cbss_display->display_bss_info.security_type = NRF_WIFI_WEP; } } if (elems.rsn) { parse_security_type(cbss_display, elems.rsn, elems.rsn_len); } else { /*Handling WPA personal & WPA enterprize modes*/ if (elems.wpa_ie) { cbss_display->display_bss_info.security_type = NRF_WIFI_WPA; if (elems.wpa_ie[25] == EAP_MODE) cbss_display->display_bss_info.security_type = NRF_WIFI_EAP; } } if (elems.ac_access_delay_ie) { cbss_display->display_bss_info.security_type = NRF_WIFI_WAPI; } switch (rdev->wiphy.signal_type) { case CFG80211_SIGNAL_TYPE_MBM: cbss_display->display_bss_info.signal.signal_type = NRF_WIFI_SIGNAL_TYPE_MBM; cbss_display->display_bss_info.signal.signal.mbm_signal = signal; break; case CFG80211_SIGNAL_TYPE_UNSPEC: cbss_display->display_bss_info.signal.signal_type = NRF_WIFI_SIGNAL_TYPE_UNSPEC; cbss_display->display_bss_info.signal.signal.unspec_signal = signal; break; default: break; } if (found != 0) { if (elems.ext_capab && (elems.ext_capab[2] & (1 << 6)) && elems.mbssid_ie) { update_multiple_bssid (rdev, cbss_display, elements, len - baselen, &elems, mgmt->bssid, cbss_display->display_bss_info.mac_addr); } list_add_tail(&cbss_display->list, &rdev->display_bss_list); } return; } #endif /*BSS_OPTIMIZATION*/ void ieee80211_update_bss_from_elems(struct ieee80211_local *local, struct ieee80211_bss *bss, struct ieee802_11_elems *elems, struct ieee80211_rx_status *rx_status, bool beacon) { int clen, srlen; if (beacon) bss->device_ts_beacon = rx_status->device_timestamp; else bss->device_ts_presp = rx_status->device_timestamp; if (elems->parse_error) { if (beacon) bss->corrupt_data |= IEEE80211_BSS_CORRUPT_BEACON; else bss->corrupt_data |= IEEE80211_BSS_CORRUPT_PROBE_RESP; } else { if (beacon) bss->corrupt_data &= ~IEEE80211_BSS_CORRUPT_BEACON; else bss->corrupt_data &= ~IEEE80211_BSS_CORRUPT_PROBE_RESP; } /* save the ERP value so that it is available at association time */ if (elems->erp_info && (!elems->parse_error || !(bss->valid_data & IEEE80211_BSS_VALID_ERP))) { bss->erp_value = elems->erp_info[0]; bss->has_erp_value = true; if (!elems->parse_error) bss->valid_data |= IEEE80211_BSS_VALID_ERP; } /* replace old supported rates if we get new values */ if (!elems->parse_error || !(bss->valid_data & IEEE80211_BSS_VALID_RATES)) { srlen = 0; if (elems->supp_rates) { clen = IEEE80211_MAX_SUPP_RATES; if (clen > elems->supp_rates_len) clen = elems->supp_rates_len; memcpy(bss->supp_rates, elems->supp_rates, clen); srlen += clen; } if (elems->ext_supp_rates) { clen = IEEE80211_MAX_SUPP_RATES - srlen; if (clen > elems->ext_supp_rates_len) clen = elems->ext_supp_rates_len; memcpy(bss->supp_rates + srlen, elems->ext_supp_rates, clen); srlen += clen; } if (srlen) { bss->supp_rates_len = srlen; if (!elems->parse_error) bss->valid_data |= IEEE80211_BSS_VALID_RATES; } } if (!elems->parse_error || !(bss->valid_data & IEEE80211_BSS_VALID_WMM)) { bss->wmm_used = elems->wmm_param || elems->wmm_info; bss->uapsd_supported = is_uapsd_supported(elems); if (!elems->parse_error) bss->valid_data |= IEEE80211_BSS_VALID_WMM; } if (beacon) { struct ieee80211_supported_band *sband = local->hw.wiphy->bands[rx_status->band]; if (!(rx_status->encoding == RX_ENC_HT) && !(rx_status->encoding == RX_ENC_VHT)) bss->beacon_rate = &sband->bitrates[rx_status->rate_idx]; } } struct ieee80211_bss * ieee80211_bss_info_update(struct ieee80211_local *local, struct ieee80211_rx_status *rx_status, struct ieee80211_mgmt *mgmt, size_t len, struct ieee80211_channel *channel, u8 *parent_mbssid) { bool beacon = ieee80211_is_beacon(mgmt->frame_control); struct cfg80211_bss *cbss, *non_tx_cbss; struct ieee80211_bss *bss, *non_tx_bss; struct cfg80211_inform_bss bss_meta = { .boottime_ns = rx_status->boottime_ns, }; bool signal_valid; struct ieee80211_sub_if_data *scan_sdata; struct ieee802_11_elems elems; size_t baselen; u8 *elements; if (rx_status->flag & RX_FLAG_NO_SIGNAL_VAL) bss_meta.signal = 0; /* invalid signal indication */ else if (ieee80211_hw_check(&local->hw, SIGNAL_DBM)) bss_meta.signal = rx_status->signal * 100; else if (ieee80211_hw_check(&local->hw, SIGNAL_UNSPEC)) bss_meta.signal = (rx_status->signal * 100) / local->hw.max_signal; bss_meta.scan_width = NL80211_BSS_CHAN_WIDTH_20; if (rx_status->bw == RATE_INFO_BW_5) bss_meta.scan_width = NL80211_BSS_CHAN_WIDTH_5; else if (rx_status->bw == RATE_INFO_BW_10) bss_meta.scan_width = NL80211_BSS_CHAN_WIDTH_10; bss_meta.chan = channel; rcu_read_lock(); scan_sdata = rcu_dereference(local->scan_sdata); if (scan_sdata && scan_sdata->vif.type == NL80211_IFTYPE_STATION && scan_sdata->vif.bss_conf.assoc && ieee80211_have_rx_timestamp(rx_status)) { bss_meta.parent_tsf = ieee80211_calculate_rx_timestamp(local, rx_status, len + FCS_LEN, 24); ether_addr_copy(bss_meta.parent_bssid, scan_sdata->vif.bss_conf.bssid); } rcu_read_unlock(); cbss = cfg80211_inform_bss_frame_data(local->hw.wiphy, &bss_meta, mgmt, len, parent_mbssid, GFP_ATOMIC); if (!cbss) return NULL; if (ieee80211_is_probe_resp(mgmt->frame_control)) { elements = mgmt->u.probe_resp.variable; baselen = offsetof(struct ieee80211_mgmt, u.probe_resp.variable); } else { baselen = offsetof(struct ieee80211_mgmt, u.beacon.variable); elements = mgmt->u.beacon.variable; } if (baselen > len) return NULL; ieee802_11_parse_elems(elements, len - baselen, false, &elems, mgmt->bssid, cbss->bssid); /* In case the signal is invalid update the status */ signal_valid = abs(channel->center_freq - cbss->channel->center_freq) <= local->hw.wiphy->max_adj_channel_rssi_comp; if (!signal_valid) rx_status->flag |= RX_FLAG_NO_SIGNAL_VAL; bss = (void *)cbss->priv; ieee80211_update_bss_from_elems(local, bss, &elems, rx_status, beacon); list_for_each_entry(non_tx_cbss, &cbss->nontrans_list, nontrans_list) { non_tx_bss = (void *)non_tx_cbss->priv; ieee80211_update_bss_from_elems(local, non_tx_bss, &elems, rx_status, beacon); } return bss; } bool ieee80211_scan_accept_presp(struct ieee80211_sub_if_data *sdata, u32 scan_flags, const u8 *da) { if (!sdata) return false; /* accept broadcast for OCE */ if (scan_flags & NL80211_SCAN_FLAG_ACCEPT_BCAST_PROBE_RESP && is_broadcast_ether_addr(da)) return true; if (scan_flags & NL80211_SCAN_FLAG_RANDOM_ADDR) return true; return ether_addr_equal(da, sdata->vif.addr); } /*Returns 1 if ssid is found or * 0 if not found *Also updates founded bss details into rdev structure */ int check_ssid_in_nontrans_list(struct cfg80211_registered_device *rdev, const u8 *start, struct ieee80211_mgmt *mgmt, size_t len, const struct ieee802_11_elems *elems) { unsigned int i = 0; u8 *nontransmitted_profile; size_t profile_len = 0; const struct element *mbssid_elem; const struct element *sub; unsigned char found = 0; memset(&nontrans_mbssid, 0, sizeof(struct non_trans_mbssid)); nontransmitted_profile = kmalloc(len, GFP_ATOMIC); mbssid_elem = (struct element *)cfg80211_find_ie(WLAN_EID_MULTIPLE_BSSID, start, len); for_each_element(sub, elems->mbssid_ie + 1, elems->mbssid_ie_len - 1) { u8 new_bssid[ETH_ALEN]; const u8 *nontrans_ssid_ie; const u8 *nontrans_bssid_index_ie; const u8 *nontrans_capab_ie; const u8 *nontrans_rsn_ie; if (sub->id != 0 || sub->datalen < 4) { continue; } if (sub->data[0] != WLAN_EID_NON_TX_BSSID_CAP || sub->data[1] != 2) { continue; } memset(nontransmitted_profile, 0, len); profile_len = cfg80211_merge_profile(start, len, mbssid_elem, sub, nontransmitted_profile, len); /*1.Geting non transmitted mbssid_idx for generating new bssid*/ nontrans_bssid_index_ie = cfg80211_find_ie(WLAN_EID_MULTI_BSSID_IDX, nontransmitted_profile, profile_len); if (!nontrans_bssid_index_ie || nontrans_bssid_index_ie[1] < 1 || nontrans_bssid_index_ie[2] == 0) { continue; /* Invalid MBSSID Index element */ } cfg80211_gen_new_bssid(mgmt->bssid, elems->mbssid_ie[0], nontrans_bssid_index_ie[2], new_bssid); /*2.Geting non transmitted bssid capabilities*/ nontrans_capab_ie = cfg80211_find_ie(WLAN_EID_NON_TX_BSSID_CAP, nontransmitted_profile, profile_len); /*3.Geting non transmitted rsn capabilities*/ nontrans_rsn_ie = cfg80211_find_ie(WLAN_EID_RSN, nontransmitted_profile, profile_len); /*4.Geting non transmitted ssid*/ nontrans_ssid_ie = cfg80211_find_ie(WLAN_EID_SSID, nontransmitted_profile, profile_len); for (i=0; iscan_req->n_ssids; i++) { if (rdev->scan_req->ssids[i].ssid_len) { if (memcmp(nontrans_ssid_ie + 2, rdev->scan_req->ssids[i].ssid, nontrans_ssid_ie[1]) == 0) { found = 1; break; } } } if (found == 1) { nontrans_mbssid.num_mbssid = 1; memcpy(nontrans_mbssid.bssid, new_bssid, ETH_ALEN); nontrans_mbssid.ssid_len = nontrans_ssid_ie[1]; nontrans_mbssid.ssid_ie = nontrans_ssid_ie; memcpy(&nontrans_mbssid.ssid[0], nontrans_ssid_ie + 2, nontrans_ssid_ie[1]); if (nontrans_capab_ie) { nontrans_mbssid.capability = nontrans_capab_ie[2]; } if (nontrans_rsn_ie) { nontrans_mbssid.rsn_len = nontrans_rsn_ie[1]; nontrans_mbssid.rsn_ie = nontrans_rsn_ie; } break; } } kfree(nontransmitted_profile); return found; } int update_mbssid_bss( struct ieee80211_local *local, struct ieee80211_sub_if_data *sdata1, struct ieee80211_rx_status *rx_status, struct ieee80211_mgmt *mgmt, struct sk_buff *skb, struct ieee80211_channel *channel) { struct ieee80211_bss *bss; struct cfg80211_registered_device *rdev; struct wiphy *wiphy; const u8 *ssidie, *rsnie, *new_rsnie; u8 *new_ssidie, *elements; size_t baselen; u8 tmp_ssidie_len, tmp_rsnie_len; u8 parent_mbssid[ETH_ALEN]; wiphy = local->hw.wiphy; rdev = wiphy_to_rdev(wiphy); if (ieee80211_is_probe_resp(mgmt->frame_control)) { elements = mgmt->u.probe_resp.variable; baselen = offsetof(struct ieee80211_mgmt, u.probe_resp.variable); } else { elements = mgmt->u.beacon.variable; baselen = offsetof(struct ieee80211_mgmt, u.beacon.variable); } if (nontrans_mbssid.num_mbssid ) { memcpy(parent_mbssid, mgmt->bssid, ETH_ALEN); memcpy(mgmt->bssid, nontrans_mbssid.bssid, 6); mgmt->u.probe_resp.capab_info = nontrans_mbssid.capability; /*Updating with Non trans SSID*/ ssidie = cfg80211_find_ie(WLAN_EID_SSID, mgmt->u.probe_resp.variable, skb->len - baselen); tmp_ssidie_len = ssidie[1] + 2; if (ssidie) { memcpy((void *)ssidie + 1, &nontrans_mbssid.ssid_len, tmp_ssidie_len - 1 ); } } bss = ieee80211_bss_info_update(local, rx_status, mgmt, skb->len, channel, parent_mbssid); if (bss) { ieee80211_rx_bss_put(local, bss); } return 0; } void ieee80211_scan_rx(struct ieee80211_local *local, struct sk_buff *skb) { struct ieee80211_rx_status *rx_status = IEEE80211_SKB_RXCB(skb); struct ieee80211_sub_if_data *sdata1, *sdata2; struct ieee80211_mgmt *mgmt = (void *)skb->data; struct ieee80211_bss *bss; struct ieee80211_channel *channel; struct cfg80211_scan_request *scan_req; struct cfg80211_registered_device *rdev; struct wiphy *wiphy; struct ieee802_11_elems elems; wiphy = local->hw.wiphy; rdev = wiphy_to_rdev(wiphy); if (skb->len < 24 || (!ieee80211_is_probe_resp(mgmt->frame_control) && !ieee80211_is_beacon(mgmt->frame_control))) return; sdata1 = rcu_dereference(local->scan_sdata); sdata2 = rcu_dereference(local->sched_scan_sdata); if (likely(!sdata1 && !sdata2)) return; scan_req = rcu_dereference(local->scan_req); if (ieee80211_is_probe_resp(mgmt->frame_control)) { struct cfg80211_sched_scan_request *sched_scan_req; u32 scan_req_flags = 0, sched_scan_req_flags = 0; sched_scan_req = rcu_dereference(local->sched_scan_req); if (scan_req) scan_req_flags = scan_req->flags; if (sched_scan_req) sched_scan_req_flags = sched_scan_req->flags; /* ignore ProbeResp to foreign address or non-bcast (OCE) * unless scanning with randomised address */ if (!ieee80211_scan_accept_presp(sdata1, scan_req_flags, mgmt->da) && !ieee80211_scan_accept_presp(sdata2, sched_scan_req_flags, mgmt->da)) return; } channel = ieee80211_get_channel(local->hw.wiphy, rx_status->freq); if (!channel || channel->flags & IEEE80211_CHAN_DISABLED) return; /*Filter out Beacons/Probe responses not related to SSID's present in the scan req*/ if (rdev->scan_req->n_ssids && rdev->scan_req->ssids[0].ssid_len) { size_t baselen; u8 *elements; const u8 *ssidie; unsigned char i, found = 0; if (ieee80211_is_probe_resp(mgmt->frame_control)) { elements = mgmt->u.probe_resp.variable; baselen = offsetof(struct ieee80211_mgmt, u.probe_resp.variable); } else { baselen = offsetof(struct ieee80211_mgmt, u.beacon.variable); elements = mgmt->u.beacon.variable; } ssidie = cfg80211_find_ie(WLAN_EID_SSID, elements, baselen); memset(&nontrans_mbssid, 0, sizeof(struct non_trans_mbssid)); ieee802_11_parse_elems(elements, skb->len - baselen, false, &elems, mgmt->bssid, mgmt->bssid); for (i=0; iscan_req->n_ssids; i++) { if (rdev->scan_req->ssids[i].ssid_len) { if (memcmp(ssidie + 2, rdev->scan_req->ssids[i].ssid, rdev->scan_req->ssids[i].ssid_len) == 0) { found = 1; break; } } } if (!found) { if (elems.ext_capab && (elems.ext_capab[2] & (1 << 6)) && elems.mbssid_ie) { if (check_ssid_in_nontrans_list(rdev, elements, mgmt, skb->len - baselen, &elems)) { update_mbssid_bss(local, sdata1, rx_status, mgmt, skb, channel); } } return; } } #ifdef BSS_OPTIMIZATION if (SCAN_DISPLAY == scan_req->scan_reason) { umac_scan_update_display_bss_database(local, rx_status, mgmt, skb->len, channel); if (mgmt->u.beacon.capab_info & WLAN_CAPABILITY_ESS) { regulatory_hint_found_beacon(wiphy, channel, GFP_ATOMIC); } }else #endif { #ifdef BSS_OPTIMIZATION /*To get rid of other scan results in particular channel & for sending specific ssid scan res to host in connect scan*/ if (rdev->scan_req->ssids[0].ssid_len != 0) { if (!is_zero_ether_addr(rdev->scan_req->mac_addr)) { /*Added this check for p2p*/ if (memcmp(mgmt->bssid, rdev->scan_req->mac_addr, ETH_ALEN) != 0) { /*Sending ssid only matched scan results to host */ send_ssid_matched_bss_to_host(local, rx_status, mgmt, skb->len, channel, jiffies); return; } } } #endif bss = ieee80211_bss_info_update(local, rx_status, mgmt, skb->len, channel, NULL); if (bss) { #ifndef BSS_OPTIMIZATION /*Sending bss data base results to host*/ send_bss_to_host(rdev, &sdata1->wdev, container_of((void *)bss, struct cfg80211_bss, priv)); #endif ieee80211_rx_bss_put(local, bss); } } } void ieee80211_prepare_scan_chandef(struct cfg80211_chan_def *chandef, enum nl80211_bss_scan_width scan_width) { memset(chandef, 0, sizeof(*chandef)); switch (scan_width) { case NL80211_BSS_CHAN_WIDTH_5: chandef->width = NL80211_CHAN_WIDTH_5; break; case NL80211_BSS_CHAN_WIDTH_10: chandef->width = NL80211_CHAN_WIDTH_10; break; default: chandef->width = NL80211_CHAN_WIDTH_20_NOHT; break; } } /* return false if no more work */ bool ieee80211_prep_hw_scan(struct ieee80211_local *local) { struct cfg80211_scan_request *req; struct cfg80211_chan_def chandef; u8 bands_used = 0; int i, ielen, n_chans; u32 flags = 0; req = rcu_dereference_protected(local->scan_req, lockdep_is_held(&local->mtx)); if (test_bit(SCAN_HW_CANCELLED, &local->scanning)) return false; if (ieee80211_hw_check(&local->hw, SINGLE_SCAN_ON_ALL_BANDS)) { for (i = 0; i < req->n_channels; i++) { local->hw_scan_req->req.channels[i] = req->channels[i]; bands_used |= BIT(req->channels[i]->band); } n_chans = req->n_channels; } else { do { if (local->hw_scan_band == NUM_NL80211_BANDS) return false; n_chans = 0; for (i = 0; i < req->n_channels; i++) { if (req->channels[i]->band != local->hw_scan_band) continue; local->hw_scan_req->req.channels[n_chans] = req->channels[i]; n_chans++; bands_used |= BIT(req->channels[i]->band); } local->hw_scan_band++; } while (!n_chans); } local->hw_scan_req->req.n_channels = n_chans; ieee80211_prepare_scan_chandef(&chandef, req->scan_width); if (req->flags & NL80211_SCAN_FLAG_MIN_PREQ_CONTENT) flags |= IEEE80211_PROBE_FLAG_MIN_CONTENT; ielen = ieee80211_build_preq_ies(local, (u8 *)local->hw_scan_req->req.ie, local->hw_scan_ies_bufsize, &local->hw_scan_req->ies, req->ie, req->ie_len, bands_used, req->rates, &chandef, flags); local->hw_scan_req->req.ie_len = ielen; local->hw_scan_req->req.no_cck = req->no_cck; ether_addr_copy(local->hw_scan_req->req.mac_addr, req->mac_addr); ether_addr_copy(local->hw_scan_req->req.mac_addr_mask, req->mac_addr_mask); ether_addr_copy(local->hw_scan_req->req.bssid, req->bssid); return true; } void __ieee80211_scan_completed(struct ieee80211_hw *hw, bool aborted) { struct ieee80211_local *local = hw_to_local(hw); bool hw_scan = local->ops->hw_scan ? 1 : 0; bool was_scanning = local->scanning; struct cfg80211_scan_request *scan_req; struct ieee80211_sub_if_data *sdata; lockdep_assert_held(&local->mtx); /* * It's ok to abort a not-yet-running scan (that * we have one at all will be verified by checking * local->scan_req next), but not to complete it * successfully. */ if (WARN_ON(!local->scanning && !aborted)) aborted = true; if (WARN_ON(!local->scan_req)) return; if (hw_scan && !aborted && !ieee80211_hw_check(&local->hw, SINGLE_SCAN_ON_ALL_BANDS) && ieee80211_prep_hw_scan(local)) { int rc; rc = drv_hw_scan(local, rcu_dereference_protected(local->scan_sdata, lockdep_is_held(&local->mtx)), local->hw_scan_req); if (rc == 0) return; /* HW scan failed and is going to be reported as aborted, * so clear old scan info. */ memset(&local->scan_info, 0, sizeof(local->scan_info)); aborted = true; } kfree(local->hw_scan_req); local->hw_scan_req = NULL; scan_req = rcu_dereference_protected(local->scan_req, lockdep_is_held(&local->mtx)); if (scan_req != local->int_scan_req) { local->scan_info.aborted = aborted; cfg80211_scan_done(scan_req, &local->scan_info); } RCU_INIT_POINTER(local->scan_req, NULL); RCU_INIT_POINTER(local->scan_sdata, NULL); local->scanning = 0; local->scan_chandef.chan = NULL; /* Set power back to normal operating levels. */ ieee80211_hw_config(local, 0); ieee80211_recalc_idle(local); ieee80211_mlme_notify_scan_completed(local); /* Requeue all the work that might have been ignored while * the scan was in progress; if there was none this will * just be a no-op for the particular interface. */ list_for_each_entry_rcu(sdata, &local->interfaces, list) { if (ieee80211_sdata_running(sdata)) ieee80211_queue_work(&sdata->local->hw, &sdata->work); } if (was_scanning) ieee80211_start_next_roc(local); } void ieee80211_scan_completed(struct ieee80211_hw *hw, struct cfg80211_scan_info *info) { struct ieee80211_local *local = hw_to_local(hw); trace_api_scan_completed(local, info->aborted); set_bit(SCAN_COMPLETED, &local->scanning); if (info->aborted) set_bit(SCAN_ABORTED, &local->scanning); memcpy(&local->scan_info, info, sizeof(*info)); ieee80211_queue_delayed_work(&local->hw, &local->scan_work, 0); } EXPORT_SYMBOL(ieee80211_scan_completed); bool __ieee80211_can_leave_ch(struct ieee80211_sub_if_data *sdata) { struct ieee80211_local *local = sdata->local; struct ieee80211_sub_if_data *sdata_iter; if (!ieee80211_is_radar_required(local)) return true; if (!regulatory_pre_cac_allowed(local->hw.wiphy)) return false; mutex_lock(&local->iflist_mtx); list_for_each_entry(sdata_iter, &local->interfaces, list) { if (sdata_iter->wdev.cac_started) { mutex_unlock(&local->iflist_mtx); return false; } } mutex_unlock(&local->iflist_mtx); return true; } bool ieee80211_can_scan(struct ieee80211_local *local, struct ieee80211_sub_if_data *sdata) { if (!__ieee80211_can_leave_ch(sdata)) return false; if (!list_empty(&local->roc_list)) return false; if (sdata->vif.type == NL80211_IFTYPE_STATION && sdata->u.mgd.flags & IEEE80211_STA_CONNECTION_POLL) return false; return true; } void ieee80211_run_deferred_scan(struct ieee80211_local *local) { lockdep_assert_held(&local->mtx); if (!local->scan_req || local->scanning) return; if (!ieee80211_can_scan(local, rcu_dereference_protected( local->scan_sdata, lockdep_is_held(&local->mtx)))) return; ieee80211_queue_delayed_work(&local->hw, &local->scan_work, round_jiffies_relative(0)); } void ieee80211_send_scan_probe_req(struct ieee80211_sub_if_data *sdata, const u8 *src, const u8 *dst, const u8 *ssid, size_t ssid_len, const u8 *ie, size_t ie_len, u32 ratemask, u32 flags, u32 tx_flags, struct ieee80211_channel *channel) { struct sk_buff *skb; u32 txdata_flags = 0; skb = ieee80211_build_probe_req(sdata, src, dst, ratemask, channel, ssid, ssid_len, ie, ie_len, flags); if (skb) { if (flags & IEEE80211_PROBE_FLAG_RANDOM_SN) { struct ieee80211_hdr *hdr = (void *)skb->data; u16 sn = prandom_u32(); txdata_flags |= IEEE80211_TX_NO_SEQNO; hdr->seq_ctrl = cpu_to_le16(IEEE80211_SN_TO_SEQ(sn)); } IEEE80211_SKB_CB(skb)->flags |= tx_flags; ieee80211_tx_skb_tid_band(sdata, skb, 7, channel->band, txdata_flags); } } void ieee80211_scan_state_send_probe(struct ieee80211_local *local, unsigned long *next_delay) { int i; struct ieee80211_sub_if_data *sdata; struct cfg80211_scan_request *scan_req; enum nl80211_band band = local->hw.conf.chandef.chan->band; u32 flags = 0, tx_flags; scan_req = rcu_dereference_protected(local->scan_req, lockdep_is_held(&local->mtx)); tx_flags = IEEE80211_TX_INTFL_OFFCHAN_TX_OK; if (scan_req->no_cck) tx_flags |= IEEE80211_TX_CTL_NO_CCK_RATE; if (scan_req->flags & NL80211_SCAN_FLAG_MIN_PREQ_CONTENT) flags |= IEEE80211_PROBE_FLAG_MIN_CONTENT; if (scan_req->flags & NL80211_SCAN_FLAG_RANDOM_SN) flags |= IEEE80211_PROBE_FLAG_RANDOM_SN; sdata = rcu_dereference_protected(local->scan_sdata, lockdep_is_held(&local->mtx)); for (i = 0; i < scan_req->n_ssids; i++) ieee80211_send_scan_probe_req( sdata, local->scan_addr, scan_req->bssid, scan_req->ssids[i].ssid, scan_req->ssids[i].ssid_len, scan_req->ie, scan_req->ie_len, scan_req->rates[band], flags, tx_flags, local->hw.conf.chandef.chan); /* * After sending probe requests, wait for probe responses * on the channel. */ *next_delay = IEEE80211_CHANNEL_TIME; local->next_scan_state = SCAN_DECISION; } int __ieee80211_start_scan(struct ieee80211_sub_if_data *sdata, struct cfg80211_scan_request *req) { struct ieee80211_local *local = sdata->local; bool hw_scan = (bool)local->ops->hw_scan; int rc; lockdep_assert_held(&local->mtx); if (local->scan_req) return -EBUSY; if (!__ieee80211_can_leave_ch(sdata)) return -EBUSY; if (!ieee80211_can_scan(local, sdata)) { /* wait for the work to finish/time out */ rcu_assign_pointer(local->scan_req, req); rcu_assign_pointer(local->scan_sdata, sdata); return 0; } again: if (hw_scan) { u8 *ies; local->hw_scan_ies_bufsize = local->scan_ies_len + req->ie_len; if (ieee80211_hw_check(&local->hw, SINGLE_SCAN_ON_ALL_BANDS)) { int i, n_bands = 0; u8 bands_counted = 0; for (i = 0; i < req->n_channels; i++) { if (bands_counted & BIT(req->channels[i]->band)) continue; bands_counted |= BIT(req->channels[i]->band); n_bands++; } local->hw_scan_ies_bufsize *= n_bands; } local->hw_scan_req = kmalloc( sizeof(*local->hw_scan_req) + req->n_channels * sizeof(req->channels[0]) + local->hw_scan_ies_bufsize, GFP_KERNEL); if (!local->hw_scan_req) return -ENOMEM; local->hw_scan_req->req.ssids = req->ssids; local->hw_scan_req->req.n_ssids = req->n_ssids; ies = (u8 *)local->hw_scan_req + sizeof(*local->hw_scan_req) + req->n_channels * sizeof(req->channels[0]); local->hw_scan_req->req.ie = ies; local->hw_scan_req->req.flags = req->flags; eth_broadcast_addr(local->hw_scan_req->req.bssid); local->hw_scan_req->req.duration = req->duration; local->hw_scan_req->req.duration_mandatory = req->duration_mandatory; local->hw_scan_band = 0; /* * After allocating local->hw_scan_req, we must * go through until ieee80211_prep_hw_scan(), so * anything that might be changed here and leave * this function early must not go after this * allocation. */ } rcu_assign_pointer(local->scan_req, req); rcu_assign_pointer(local->scan_sdata, sdata); if (req->flags & NL80211_SCAN_FLAG_RANDOM_ADDR) get_random_mask_addr(local->scan_addr, req->mac_addr, req->mac_addr_mask); else memcpy(local->scan_addr, sdata->vif.addr, ETH_ALEN); if (hw_scan) { __set_bit(SCAN_HW_SCANNING, &local->scanning); } else if ((req->n_channels == 1) && (req->channels[0] == local->_oper_chandef.chan)) { /* * If we are scanning only on the operating channel * then we do not need to stop normal activities */ unsigned long next_delay; __set_bit(SCAN_ONCHANNEL_SCANNING, &local->scanning); ieee80211_recalc_idle(local); /* Notify driver scan is starting, keep order of operations * same as normal software scan, in case that matters. */ ieee80211_configure_filter(local); /* accept probe-responses */ /* We need to ensure power level is at max for scanning. */ ieee80211_hw_config(local, 0); if ((req->channels[0]->flags & (IEEE80211_CHAN_NO_IR | IEEE80211_CHAN_RADAR)) || !req->n_ssids) { next_delay = IEEE80211_PASSIVE_CHANNEL_TIME; } else { ieee80211_scan_state_send_probe(local, &next_delay); next_delay = IEEE80211_CHANNEL_TIME; } /* Now, just wait a bit and we are all done! */ ieee80211_queue_delayed_work(&local->hw, &local->scan_work, next_delay); return 0; } else { /* Do normal software scan */ __set_bit(SCAN_SW_SCANNING, &local->scanning); } ieee80211_recalc_idle(local); if (hw_scan) { ieee80211_prep_hw_scan(local); rc = drv_hw_scan(local, sdata, local->hw_scan_req); } else { rc = 0; } if (rc) { kfree(local->hw_scan_req); local->hw_scan_req = NULL; local->scanning = 0; ieee80211_recalc_idle(local); local->scan_req = NULL; RCU_INIT_POINTER(local->scan_sdata, NULL); } if (hw_scan && rc == 1) { /* * we can't fall back to software for P2P-GO * as it must update NoA etc. */ if (ieee80211_vif_type_p2p(&sdata->vif) == NL80211_IFTYPE_P2P_GO) return -EOPNOTSUPP; hw_scan = false; goto again; } return rc; } unsigned long ieee80211_scan_get_channel_time(struct ieee80211_channel *chan) { /* * TODO: channel switching also consumes quite some time, * add that delay as well to get a better estimation */ if (chan->flags & (IEEE80211_CHAN_NO_IR | IEEE80211_CHAN_RADAR)) return IEEE80211_PASSIVE_CHANNEL_TIME; return IEEE80211_PROBE_DELAY + IEEE80211_CHANNEL_TIME; } void ieee80211_scan_state_decision(struct ieee80211_local *local, unsigned long *next_delay) { bool associated = false; bool tx_empty = true; bool bad_latency; struct ieee80211_sub_if_data *sdata; struct ieee80211_channel *next_chan; enum mac80211_scan_state next_scan_state; struct cfg80211_scan_request *scan_req; /* * check if at least one STA interface is associated, * check if at least one STA interface has pending tx frames * and grab the lowest used beacon interval */ mutex_lock(&local->iflist_mtx); list_for_each_entry(sdata, &local->interfaces, list) { if (!ieee80211_sdata_running(sdata)) continue; if (sdata->vif.type == NL80211_IFTYPE_STATION) { if (sdata->u.mgd.associated) { associated = true; if (!qdisc_all_tx_empty(sdata->dev)) { tx_empty = false; break; } } } } mutex_unlock(&local->iflist_mtx); scan_req = rcu_dereference_protected(local->scan_req, lockdep_is_held(&local->mtx)); next_chan = scan_req->channels[local->scan_channel_idx]; /* * we're currently scanning a different channel, let's * see if we can scan another channel without interfering * with the current traffic situation. * * Keep good latency, do not stay off-channel more than 125 ms. */ bad_latency = time_after(jiffies + ieee80211_scan_get_channel_time(next_chan), local->leave_oper_channel_time + HZ / 8); if (associated && !tx_empty) { if (scan_req->flags & NL80211_SCAN_FLAG_LOW_PRIORITY) next_scan_state = SCAN_ABORT; else next_scan_state = SCAN_SUSPEND; } else if (associated && bad_latency) { next_scan_state = SCAN_SUSPEND; } else { next_scan_state = SCAN_SET_CHANNEL; } local->next_scan_state = next_scan_state; *next_delay = 0; } void ieee80211_scan_state_set_channel(struct ieee80211_local *local, unsigned long *next_delay) { int skip; struct ieee80211_channel *chan; enum nl80211_bss_scan_width oper_scan_width; struct cfg80211_scan_request *scan_req; scan_req = rcu_dereference_protected(local->scan_req, lockdep_is_held(&local->mtx)); skip = 0; chan = scan_req->channels[local->scan_channel_idx]; local->scan_chandef.chan = chan; local->scan_chandef.center_freq1 = chan->center_freq; local->scan_chandef.center_freq2 = 0; switch (scan_req->scan_width) { case NL80211_BSS_CHAN_WIDTH_5: local->scan_chandef.width = NL80211_CHAN_WIDTH_5; break; case NL80211_BSS_CHAN_WIDTH_10: local->scan_chandef.width = NL80211_CHAN_WIDTH_10; break; case NL80211_BSS_CHAN_WIDTH_20: /* If scanning on oper channel, use whatever channel-type * is currently in use. */ oper_scan_width = cfg80211_chandef_to_scan_width( &local->_oper_chandef); if (chan == local->_oper_chandef.chan && oper_scan_width == scan_req->scan_width) local->scan_chandef = local->_oper_chandef; else local->scan_chandef.width = NL80211_CHAN_WIDTH_20_NOHT; break; } if (ieee80211_hw_config(local, IEEE80211_CONF_CHANGE_CHANNEL)) skip = 1; /* advance state machine to next channel/band */ local->scan_channel_idx++; if (skip) { /* if we skip this channel return to the decision state */ local->next_scan_state = SCAN_DECISION; return; } /* * Probe delay is used to update the NAV, cf. 11.1.3.2.2 * (which unfortunately doesn't say _why_ step a) is done, * but it waits for the probe delay or until a frame is * received - and the received frame would update the NAV). * For now, we do not support waiting until a frame is * received. * * In any case, it is not necessary for a passive scan. */ if ((chan->flags & (IEEE80211_CHAN_NO_IR | IEEE80211_CHAN_RADAR)) || !scan_req->n_ssids) { *next_delay = IEEE80211_PASSIVE_CHANNEL_TIME; local->next_scan_state = SCAN_DECISION; return; } /* active scan, send probes */ *next_delay = IEEE80211_PROBE_DELAY; local->next_scan_state = SCAN_SEND_PROBE; } void ieee80211_scan_state_suspend(struct ieee80211_local *local, unsigned long *next_delay) { /* switch back to the operating channel */ local->scan_chandef.chan = NULL; ieee80211_hw_config(local, IEEE80211_CONF_CHANGE_CHANNEL); /* disable PS */ ieee80211_offchannel_return(local); *next_delay = HZ / 5; /* afterwards, resume scan & go to next channel */ local->next_scan_state = SCAN_RESUME; } void ieee80211_scan_state_resume(struct ieee80211_local *local, unsigned long *next_delay) { ieee80211_offchannel_stop_vifs(local); if (local->ops->flush) { ieee80211_flush_queues(local, NULL, false); *next_delay = 0; } else *next_delay = HZ / 10; /* remember when we left the operating channel */ local->leave_oper_channel_time = jiffies; /* advance to the next channel to be scanned */ local->next_scan_state = SCAN_SET_CHANNEL; } void ieee80211_scan_work(struct work_struct *work) { struct ieee80211_local *local = container_of(work, struct ieee80211_local, scan_work.work); struct ieee80211_sub_if_data *sdata; struct cfg80211_scan_request *scan_req; unsigned long next_delay = 0; bool aborted; mutex_lock(&local->mtx); if (!ieee80211_can_run_worker(local)) { aborted = true; goto out_complete; } sdata = rcu_dereference_protected(local->scan_sdata, lockdep_is_held(&local->mtx)); scan_req = rcu_dereference_protected(local->scan_req, lockdep_is_held(&local->mtx)); /* When scanning on-channel, the first-callback means completed. */ if (test_bit(SCAN_ONCHANNEL_SCANNING, &local->scanning)) { aborted = test_and_clear_bit(SCAN_ABORTED, &local->scanning); goto out_complete; } if (test_and_clear_bit(SCAN_COMPLETED, &local->scanning)) { aborted = test_and_clear_bit(SCAN_ABORTED, &local->scanning); goto out_complete; } if (!sdata || !scan_req) goto out; if (!local->scanning) { int rc; RCU_INIT_POINTER(local->scan_req, NULL); RCU_INIT_POINTER(local->scan_sdata, NULL); rc = __ieee80211_start_scan(sdata, scan_req); if (rc) { /* need to complete scan in cfg80211 */ rcu_assign_pointer(local->scan_req, scan_req); aborted = true; goto out_complete; } else goto out; } /* * as long as no delay is required advance immediately * without scheduling a new work */ do { if (!ieee80211_sdata_running(sdata)) { aborted = true; goto out_complete; } switch (local->next_scan_state) { case SCAN_DECISION: /* if no more bands/channels left, complete scan */ if (local->scan_channel_idx >= scan_req->n_channels) { aborted = false; goto out_complete; } ieee80211_scan_state_decision(local, &next_delay); break; case SCAN_SET_CHANNEL: ieee80211_scan_state_set_channel(local, &next_delay); break; case SCAN_SEND_PROBE: ieee80211_scan_state_send_probe(local, &next_delay); break; case SCAN_SUSPEND: ieee80211_scan_state_suspend(local, &next_delay); break; case SCAN_RESUME: ieee80211_scan_state_resume(local, &next_delay); break; case SCAN_ABORT: aborted = true; goto out_complete; } } while (next_delay == 0); ieee80211_queue_delayed_work(&local->hw, &local->scan_work, next_delay); goto out; out_complete: __ieee80211_scan_completed(&local->hw, aborted); out: mutex_unlock(&local->mtx); } int ieee80211_request_scan(struct ieee80211_sub_if_data *sdata, struct cfg80211_scan_request *req) { int res; mutex_lock(&sdata->local->mtx); res = __ieee80211_start_scan(sdata, req); mutex_unlock(&sdata->local->mtx); return res; } int ieee80211_request_ibss_scan(struct ieee80211_sub_if_data *sdata, const u8 *ssid, u8 ssid_len, struct ieee80211_channel **channels, unsigned int n_channels, enum nl80211_bss_scan_width scan_width) { struct ieee80211_local *local = sdata->local; int ret = -EBUSY, i, n_ch = 0; enum nl80211_band band; mutex_lock(&local->mtx); /* busy scanning */ if (local->scan_req) goto unlock; /* fill internal scan request */ if (!channels) { int max_n; for (band = 0; band < NUM_NL80211_BANDS; band++) { if (!local->hw.wiphy->bands[band]) continue; max_n = local->hw.wiphy->bands[band]->n_channels; for (i = 0; i < max_n; i++) { struct ieee80211_channel *tmp_ch = &local->hw.wiphy->bands[band]->channels[i]; if (tmp_ch->flags & (IEEE80211_CHAN_NO_IR | IEEE80211_CHAN_DISABLED)) continue; local->int_scan_req->channels[n_ch] = tmp_ch; n_ch++; } } if (WARN_ON_ONCE(n_ch == 0)) goto unlock; local->int_scan_req->n_channels = n_ch; } else { for (i = 0; i < n_channels; i++) { if (channels[i]->flags & (IEEE80211_CHAN_NO_IR | IEEE80211_CHAN_DISABLED)) continue; local->int_scan_req->channels[n_ch] = channels[i]; n_ch++; } if (WARN_ON_ONCE(n_ch == 0)) goto unlock; local->int_scan_req->n_channels = n_ch; } local->int_scan_req->ssids = &local->scan_ssid; local->int_scan_req->n_ssids = 1; local->int_scan_req->scan_width = scan_width; memcpy(local->int_scan_req->ssids[0].ssid, ssid, IEEE80211_MAX_SSID_LEN); local->int_scan_req->ssids[0].ssid_len = ssid_len; ret = __ieee80211_start_scan(sdata, sdata->local->int_scan_req); unlock: mutex_unlock(&local->mtx); return ret; } /* * Only call this function when a scan can't be queued -- under RTNL. */ void ieee80211_scan_cancel(struct ieee80211_local *local) { /* * We are canceling software scan, or deferred scan that was not * yet really started (see __ieee80211_start_scan ). * * Regarding hardware scan: * - we can not call __ieee80211_scan_completed() as when * SCAN_HW_SCANNING bit is set this function change * local->hw_scan_req to operate on 5G band, what race with * driver which can use local->hw_scan_req * * - we can not cancel scan_work since driver can schedule it * by ieee80211_scan_completed(..., true) to finish scan * * Hence we only call the cancel_hw_scan() callback, but the low-level * driver is still responsible for calling ieee80211_scan_completed() * after the scan was completed/aborted. */ mutex_lock(&local->mtx); if (!local->scan_req) goto out; /* * We have a scan running and the driver already reported completion, * but the worker hasn't run yet or is stuck on the mutex - mark it as * cancelled. */ if (test_bit(SCAN_HW_SCANNING, &local->scanning) && test_bit(SCAN_COMPLETED, &local->scanning)) { set_bit(SCAN_HW_CANCELLED, &local->scanning); goto out; } if (test_bit(SCAN_HW_SCANNING, &local->scanning)) { /* * Make sure that __ieee80211_scan_completed doesn't trigger a * scan on another band. */ set_bit(SCAN_HW_CANCELLED, &local->scanning); if (local->ops->cancel_hw_scan) drv_cancel_hw_scan(local, rcu_dereference_protected(local->scan_sdata, lockdep_is_held(&local->mtx))); goto out; } /* * If the work is currently running, it must be blocked on * the mutex, but we'll set scan_sdata = NULL and it'll * simply exit once it acquires the mutex. */ cancel_delayed_work(&local->scan_work); /* and clean up */ memset(&local->scan_info, 0, sizeof(local->scan_info)); __ieee80211_scan_completed(&local->hw, true); out: mutex_unlock(&local->mtx); }