
Copyright © 2013 Nordic Semiconductor ASA. All rights reserved.
Reproduction in whole or in part is prohibited without the prior written permission of the copyright holder.

Introduction to S110 SoftDevice
nRF51 Series

User Guide v1.0

Introduction to S110 SoftDevice v1.0
1 Introduction
This document provides an overview of the S110 SoftDevice including information about the API, how to
write applications, and how to handle events coming from the SoftDevice. The S110 SoftDevice can be used
to build applications on Bluetooth® low energy chips from the nRF51 series.

A SoftDevice is a protocol stack solution that runs in a protected code area with an accompanying protected
RAM area. This provides the stack with complete protection from the application when it is running,
preventing the application from causing failures inside the stack. The SoftDevice is a precompiled and pre-
linked HEX file that is independent from the application and can be programmed separately.

The S110 SoftDevice implements a single mode Bluetooth low energy (BLE) stack, and can be used in a
Peripheral role or a Broadcaster role.

 Figure 1 System on Chip application with the SoftDevice

1.1 Required reading
It is recommended that the following documents are read before using the S110 SoftDevice:

• S110 nRF51822 SoftDevice Specification
• nRF51822 Product Specification
• nRF51 Series Reference Manual
• Bluetooth Core Specification Version 4.0 Volume 3, parts C, F and G, and Volume 6 available at

https://www.bluetooth.org.

 CMSIS

 nRF API

Application – Profiles and Services

App-Specific
peripheral

drivers

 nRF51 HW

S110 SoftDevice

Protocol Stack

SoftDevice
Manager

SoC
Library

| Protocol API (SVC calls)
Page 2 of 7

https://www.bluetooth.org/Technical/Specifications/adopted.htm
https://www.bluetooth.org/Technical/Specifications/adopted.htm

Introduction to S110 SoftDevice v1.0
2 API
The SoftDevice’s API is modeled on the functions and procedures defined in the Bluetooth Core Specification.
All of the API functions are implemented as supervisor calls (SVC). This means that when you call an API
function the ARM SVC instruction is executed, with a number as an operand. This causes an exception (in
ARM’s terms) and the SVC handler inside the SoftDevice to run. The handler determines the API function
that was called by looking at the SVC operand.

The number of parameters to any SoftDevice API function is limited to four by the SVC mechanism. Most API
functions require more than four parameters, so they usually take one or more pointers to C structures as
parameters. Further parameters can be read as elements in those structures.

The API is defined in a set of header files which are divided based on which part of the Bluetooth Core
Specification they relate to (for example GAP, GATT Client, GATT Server, and so on). Each header file contains
declarations for API methods, data structures, error codes, and similar which are related to the
corresponding part of the Bluetooth Core Specification. For example, a GAP event (such as
BLE_GAP_EVT_CONNECTED) will be defined in ble_gap.h, while a GATTS parameter structure (such as
ble_gatts_hvx_t) will be defined in ble_gatts.h.

In reality, the header files are nothing more than a list of which API function corresponds to which SVC
operand, and which parameters they expect. However, when used from an application perspective, they
look like normal C functions.

All functions in the API are non-blocking, but there are both synchronous and asynchronous functions. Most
are synchronous, and return a result immediately but some start an operation that will result in the
SoftDevice sending an event to the application at a later time. The nRF51 SDK help documentation contains
a complete reference for all API functions, including their parameters and return values as well as message
sequence charts showing which events are triggered by which functions.

The SoftDevice requires exclusive access to some peripherals and restricts access to others. For the ones that
have restricted access, separate API functions are provided so that a peripheral can be safely shared
between the application and the SoftDevice. All chip resources the SoftDevice needs to run are acquired
when it is enabled, as described in the S110 nRF51822 SoftDevice Specification. For more information on the
SoftDevice architecture, see Appendix A in the nRF51 Reference Manual.

3 Handling events
The SoftDevice is designed to be used by an event-driven application. Information from the SoftDevice to
the application is delivered as an event through a software interrupt.

To start using the SoftDevice, the application initializes it with a clock source and a pointer to an error
handler. To receive events, the application also has to enable the correct software interrupt. Usually an
application will perform a use case specific initialization after enabling the software interrupt (for example
setting up services, starting sensor readings), then start advertising and waiting for events (for example, a
connection from a Central device).

To reduce power consumption, an application will typically put the chip to sleep while waiting for events. An
event wakes up the chip and triggers the software interrupt and its handler. This allows the application to
call an API function to retrieve the event.
Page 3 of 7

Introduction to S110 SoftDevice v1.0

 Figure 2 Sequence chart showing the initialization and event handling of an S110 application

Events are delivered to the application as a pointer to a C structure. This structure will contain different data
depending on the type of event that the application can process and act upon. The event structures for
different modules are defined in the header file of the corresponding layer (such as ble_gatts.h, ble_gap.h).

The nRF51 SDK provides a module called ble_stack_handler which makes initialization and event retrieval
easier. In the SDK examples, all events are delivered to the application through this module to a function
called ble_evt_dispatch. Because all events come through ble_evt_dispatch, it is used to send events to
modules in the system. Each module then implements its own handler, managing only the events that the
module needs.

Please see the SDK’s ble_stack_handler module for details on how the interrupt handler is used to pass
events on the application’s event handler function (called ble_evt_dispatch in all SDK examples).
Page 4 of 7

Introduction to S110 SoftDevice v1.0
4 Buffer management
The SoftDevice has an internal buffer for data packets. Some on-air packets and API functions consume
parts of the buffer, while others do not use it. Functions that use the buffer are clearly marked in their header
file. A BLE_EVT_TX_COMPLETE event is given to the application each time a packet consuming a space in
the buffer is sent on-air.

The application can choose between two different strategies for managing the buffer:

• Utilizing a counter for the number of free spaces – An application can decrement a
counter when buffers are consumed and increment it when BLE_EVT_TX_COMPLETE events
are received. There is an API method giving the initial number of buffers available, which
must be used to initialize the counter. By keeping track of how much of the buffer is used,
the application can know beforehand if a particular operation needing space in the buffer
will succeed.

• Handling return codes – If there is no space left in the buffer, methods needing buffer
space will give back a BLE_ERROR_NO_TX_BUFFERS return code. When this happens,
whatever operation failed must be retried when a BLE_EVT_TX_COMPLETE event is
received.

5 Bluetooth Services and Profiles
Because the SoftDevice generates events, all service implementations in the SDK are built to be event driven
and have an initialization method and an event handler. In addition, most services have one or more API
functions that trigger service specific actions. It is application specific when or how to call these methods.
An example of this can be seen in the heart rate service, where the
ble_hrs_heart_rate_measurement_send() function triggers the sending of a new heart rate measurement to
the Central.

The initialization method of all service implementations takes two parameters; an instance structure and an
initialization parameter structure. The instance structure contains persistent information for a service,
including its state, handles to its characteristics, and similar. In this way, the structure functions as a handle
to a specific instance of a service which all API functions need as their first parameter. The initialization
parameter structure holds initialization values and other parameters that select the functionality of the
service. It is only useful when setting up the service and can be removed immediately after initialization is
finished. This structure can be seen in the services_init() of main.c in most of the SDK examples such as
ble_app_hrs.

Since a profile in Bluetooth low energy is a use case description for a set of services, the profile
implementations themselves are not visible in code. A profile is supported by having the correct services
and implementing the behavior as defined in profile specifications released by the Bluetooth SIG. For
example, the proximity application in the SDK (for both the evaluation board and nRFGo Motherboard)
implements the Reporter role of the proximity profile by including Link Loss Service, Immediate Alert
Service, and TX Power Service.
Page 5 of 7

Introduction to S110 SoftDevice v1.0
6 Helper modules
The nRF51 SDK contains several helper modules to make it easier to build nicely structured, event driven
applications. There are modules to handle timers, buttons, UART communication, and so on. To the
SoftDevice, all of these are event driven, and similar in that they need initialization and will give callbacks or
events when things happen. These modules are documented in the nRF51 SDK help documentation.

7 Error handling
Inside the SoftDevice there are asserts that will fail if critical conditions are not true. During normal flow of
an application which uses the API as documented, these will not fail. However, if there is a problem with
program flow or API usage, it is reported to the application by calling the assert handler that was passed
when initializing the SoftDevice. In this handler, a file name (from the SoftDevice source code) and a line
number can be read out. In production code, the only way to recover from a SoftDevice assert is to reset the
chip. If you ever see such an assert, please report it to technical support by creating a support case.

The SDK provides functionality useful for other error handling making it possible to easily check the error
codes that the SoftDevice API functions return in a consistent way. If any method fails, a common error
handler is called which can be used to track down the error. The assert handling methods delivered in the
nRF51 SDK should not be used in a final product. They are intended to help with development but are
provided as examples only.

Note: The error handler in SDK v 4.1.0 and v4.2.0 performs a system reset per default, which is not
suitable for application debugging. The error handler should be either modified for
debugging or a break point set prior to the reset when developing application code. For
development, it is best to remove the error handler.
Page 6 of 7

Introduction to S110 SoftDevice v1.0
Liability disclaimer
Nordic Semiconductor ASA reserves the right to make changes without further notice to the product to
improve reliability, function or design. Nordic Semiconductor ASA does not assume any liability arising out
of the application or use of any product or circuits described herein.

Life support applications
Nordic Semiconductor’s products are not designed for use in life support appliances, devices, or systems
where malfunction of these products can reasonably be expected to result in personal injury. Nordic
Semiconductor ASA customers using or selling these products for use in such applications do so at their
own risk and agree to fully indemnify Nordic Semiconductor ASA for any damages resulting from such
improper use or sale.

Contact details
For your nearest distributor, please visit http://www.nordicsemi.com.
Information regarding product updates, downloads, and technical support can be accessed through your
My Page account on our homepage.

Revision History

Date Version Description

June 2013 1.0

Main office:

Phone: +47 72 89 89 00
Fax: +47 72 89 89 89

Otto Nielsens veg 12
7052 Trondheim
Norway

Mailing address: Nordic Semiconductor
P.O. Box 2336
7004 Trondheim
Norway
Page 7 of 7

http://www.nordicsemi.no

	1 Introduction
	1.1 Required reading

	2 API
	3 Handling events
	4 Buffer management
	5 Bluetooth Services and Profiles
	6 Helper modules
	7 Error handling

