
s210_nrf51422 migration document

Table of Contents
s210_nrf51422 migration document ... 1

Introduction to the s210_nrf51422 migration document ... 1

S210_nrf51422_5.0.0 .. 2

Required changes ... 2

Common .. 2

ANT specific ... 3

New Functionality .. 5

Common .. 5

ANT specific ... 5

Bootloaders ... 7

BLE specific ... 7

ANT specific ... 7

S210_nrf51422_4.0.0 .. 9

Required changes ... 9

New functionality ... 11

Introduction to the s210_nrf51422
migration document

This document describes how to migrate to a new version of the s210_nrf51422 SoftDevice. The
s210_nrf51422 release notes should be read in conjunction with this document.

For each version, we have the following sections:

 "Required changes" describes how an application would have used the previous version

of the SoftDevice, and how it must now use this version for the given change.

 "New functionality" describes how to use new features and functionality offered by this

version of the SoftDevice. Note: Not all new functionality may be covered; the release

notes will contain a full list of new features and functionality.

Each section describes how to migrate to a given version from the previous version. If you are migrating
to the current version from the previous version, follow the instructions in that section. To migrate
between versions that are more than one version apart, follow the migration steps for all intermediate
versions in order.

Copyright (c) Nordic Semiconductor ASA. All rights reserved

S210_nrf51422_5.0.0

This section describes how to migrate to s210_nrf51422_5.0.0 from s210_nrf51422_4.0.1

Required changes

Common

SoftDevice size

 The SoftDevice CODE size remains the same. This results in no change in application

CODE starting address.

 The SoftDevice RAM size remains the same. This results in no change in the

application RAM starting address.

SVC number changes:

The SVC numbers in use by the SoftDevice have been changed so application(s) and bootloader(s) need
to be recompiled against the new header files. For systems using a bootloader to perform over-the-air

device SoftDevice updates, refer to Bootloaders section.

The NRF_POWER_DCDC_MODES enumeration has been simplified:

Instead of the previous OFF, ON and AUTOMATIC modes, it can now only be set to

NRF_POWER_DCDC_DISABLE or NRF_POWER_DCDC_ENABLE. This affects the

sd_power_dcdc_mode_set() SV call. Note that the DC/DC converter is only supported on nRF51

series IC revision 3.

ANT specific

Default ANT stack channel configuration and availability has changed

In previous SoftDevices supporting ANT, the total number of channels supported has been statically
defined and the required memory pre-allocated. This SoftDevice introduces the capability for applications
to tailor and scale the following ANT stack options using an ANT Stack Enable Configuration API.
Applications will need to configure the stack specifically.

ANT Stack Enable Configuration:

 Total number of ANT channels

 Number of encrypted channels

 Transmit burst queue size

The stack options are specified using the new API:

uint32_t sd_ant_enable(ANT_ENABLE * const pstChannelEnable)

 Returns NRF_SUCCESS if parameters were

accepted; NRF_ERROR_INVALID_PARAM otherwise

 Call after enabling Softdevice, sd_softdevice_enable(), and before any ANT related

functions

 Usage of this API is optional, except as noted below

Upon calling sd_softdevice_enable(), the ANT stack defaults to supporting 1 ANT channel (with

encryption support) and a 64 byte transmit burst buffer. If advanced features (additional
channels, encrypted channels, larger TX burst buffers) are needed by the application,
then sd_ant_enable() must be used to specify the desired configuration. Application RAM memory must
be supplied to the SoftDevice in order to increase the aforementioned stack options beyond the default
configuration.

The ANT_ENABLE input structure consists of:

 ucTotalNumberOfChannels – total number of channels desired by the application (1 to

15)

 ucNumberOfEncryptedChannels – total number of encrypted ANT channels desired by

the application (0 to ucTotalNumberOfChannels)

 pucMemoryBlockStartLocation – pointer to the RAM buffer location supplied by the

application. Memory buffer is reserved for use by the SoftDevice in order to support

specified ANT stack configuration.

 usMemoryBlockByteSize – size of provided memory buffer location by the application

The value of usMemoryBlockByteSize can be determined by using the provided macro definition in the
ant_parameters.h header file.

 #define ANT_ENABLE_GET_REQUIRED_SPACE (ucTotalNumberOfChannels,

ucNumberOfEncryptedChannels, usTxQueueByteSize)

o Note: usTxQueueByteSize should be 64, 128 or 256 bytes.

Usage example:

To specify the same ANT stack options supported in previous SoftDevices (For example: S310 v2.0.1,
S210 v4.0.1):

 8 ANT channels

 1 encrypted channel

 128 byte TX burst buffer

#define ANT_NUM_TOTAL_CHANNELS 8

#define ANT_NUM_ENCRYPTED_CHANNELS 1

#define ANT_TX_BURST_QUEUE_SIZE 128

static ANT_ENABLE stANTEnableParams;

static uint8_t

aucANTEnableMem[ANT_ENABLE_GET_REQUIRED_SPACE(ANT_NUM_TOTAL_CHANNELS,

ANT_NUM_ENCRYPTED_CHANNELS, ANT_TX_BURST_QUEUE_SIZE)];

// configure ANT stack options

stANTEnableParams.ucTotalNumberOfChannels = ANT_NUM_TOTAL_CHANNELS;

stANTEnableParams.ucNumberOfEncryptedChannels = ANT_NUM_ENCRYPTED_CHANNELS;

stANTEnableParams.pucMemoryBlockStartLocation = aucANTEnableMem;

stANTEnableParams.usMemoryBlockByteSize =

ANT_ENABLE_GET_REQUIRED_SPACE(ANT_NUM_TOTAL_CHANNELS,

ANT_NUM_ENCRYPTED_CHANNELS, ANT_TX_BURST_QUEUE_SIZE);

// enable softdevice

ulErrorCode = sd_softdevice_enable(NRF_CLOCK_LFCLKSRC_XTAL_50_PPM,

softdevice_assert_callback);

// enable ANT stack options

ulErrorCode = sd_ant_enable(&stANTEnableParams);

// ... configure and use ANT channels ...etc

New Functionality

Common

The SoftDevice info structure is now documented

A set of new macros has been introduced to access the SoftDevice info structure directly from hex or bin
SoftDevice images. This can be useful when doing device firmware upgrades or when generic information

about a SoftDevice in binary form is to be retrieved. See nrf_sdm.h for details on the new macros listed

below.

 MBR_SIZE

 SOFTDEVICE_INFO_STRUCT_OFFSET

 SOFTDEVICE_INFO_STRUCT_ADDRESS

 SOFTDEVICE_INFO_STRUCT_OFFSET

 SD_FWID_OFFSET

 SD_SIZE_GET()

 SD_FWID_GET()

ANT specific

Increased total number of channels supported

The maximum number of channels supported by the ANT stack has been increased from 8 to 15. The
default number of channels supported by the ANT stack upon enabling the SoftDevice is 1. Each

additional channel requires SIZE_OF_NON_ENCRYPTED_ANT_CHANNEL bytes of memory as defined in

ant_parameters.h.

For details on how to enable additional channels, refer to Configurable ANT stack channel
configuration under Required changes section.

Increased number of channels supporting encryption

The maximum number of encrypted channels supported by the ANT stack has been increased from 1 to
15. The number of encrypted channels cannot exceed the total number of ANT channels configured.
The default number of encrypted channels supported by the ANT stack upon enabling the SoftDevice is

1. Each additional encryption channel supported requires SIZE_OF_ENCRYPTED_ANT_ANT_CHANNEL

bytes of memory as defined in ant_parameters.h. This is an additional memory cost on top of

SIZE_OF_NON_ENCRYPTED_ANT_CHANNEL bytes required to support an ANT channel.

For details on how to enable additional encrypted channels, refer to Default ANT stack channel
configuration and availability has changed under Required changes section.
Increased supported number of encryption keys
The number of encryption keys supported now increase proportionally to the number of encrypted
channels configured. The following APIs are no longer bound to 1 key and may use a key index
(ucKeyNum) that is bounded between [0 to (numEncryptedChannels – 1)], where numEncryptedChannels
> 1.

 sd_ant_crypto_channel_enable()

 sd_ant_crypto_key_set()

Encryption channel pool
An available encryption channel pool is created for the number of encryption channels desired by the
application. It represents the total number of channels allowed to run concurrently with encryption
enabled. Any ANT channel may enable encryption as long as the available encryption channel pool is not
fully used. Encryption channel pool usage example is shown below:
//.. ANT stack configured for total 8 channels, 2 encrypted channels

// total available encryption channel pool = 2
ulErrorCode = sd_ant_crypto_channel_enable(0, 1, 0, 1); // channel 0 encrypt enable
if (ulErrorCode == NRF_SUCCESS)
{
 // Successful API call, available encryption pool reduced by 1
 // total available encryption channel pool = 1
}

ulErrorCode = sd_ant_crypto_channel_enable(7, 1, 7, 1); // channel 7 encrypt enable
if (ulErrorCode == NRF_SUCCESS)
{
 // Successful API call, available encryption pool reduced by 1
 // total available encryption channel pool = 0
}

// ...

ulErrorCode = sd_ant_crypto_channel_enable(0, 0, 3, 1); // channel 0 encrypt disable
if (ulErrorCode == NRF_SUCCESS)
{
 // Successful API call, available encryption pool increased by 1
 // total available encryption channel pool = 1
}

Note: Successful or failed encryption negotiations reported by ANT events:
EVENT_ENCRYPT_NEGOTIATION_SUCCESS and EVENT_ENCRYPT_NEGOTIATION_FAIL have no
effect on encrypted channel pool status. Encrypted channel pool assignment/un-assignment are handled
strictly by the sd_ant_crypto_channel_enable() API.

Transmit burst queue size configurability

The transmit burst queue is used by the ANT stack in order buffer packets to be sent during burst
transfers. The size of the burst queue does not represent the maximum burst transfer size. Its use is to
help manage and source data packets from the application to the over-the-air ANT transfer protocol in a
timely manner and help offset application processing latency. Calls made to

sd_ant_burst_handler_request() API result in filling this buffer.

In previous SoftDevices, the transmit burst queue size was fixed at 128 bytes. With the introduction of
the ANT stack enable configuration interface, the transmit burst queue size can be adjusted via the

sd_ant_enable() API. The default queue size upon enabling the SoftDevice is 64 bytes.

Size of the transmit burst queue cannot be less than 64 bytes and no greater than 256 bytes and must be

a value that is a power of 2. For details on how to allocate transmit burst queue size, refer to Default
ANT stack channel configuration and availability has changed under Required changes section.

Bootloaders

BLE specific

There are no BLE specific bootloader changes since the 2.0.0 release.

ANT specific

For systems using a bootloader to perform over-the-air firmware updates using ANT, users must first
verify the compatibility of the existing bootloader with this SoftDevice. Bootloaders built with the previous
SoftDevice versions (eg. S310 v2.0.1, S210 v4.01) will not be compatible with this SoftDevice due to
changes in the SVC numbering and ordering.

If not compatible, bootloaders must be recompiled with the updated SoftDevice headers (along with any
other potential changes reflecting bootloader compatibility and/or identification such as version strings).
When performing over-the-air updates, both bootloader and SoftDevice must be upgraded at the same
time using a combined image.

The following depicts the supported upgrade paths to the new S210 SoftDevice when performing over-
the-air firmware updates using an ANT bootloader (eg. ANT-WP bootloader).

Updating from S210 v4.0.1 to S210 v5.0.0

Updating from S310 v2.0.1 to S210 v5.0.0

Initial Config

S210 v4.0.1

Bootloader v1

App v1

Combined
SoftDevice and

Bootloader
Image Update Interim Step 1

S210 v5.0.0

Bootloader v2

Application
Image Update

Result

S210 v5.0.0

Bootloader v2

App v3

Initial Config

S310 v2.0.1

Bootloader v1

App v2

Combined
SoftDevice and

Bootloader
Image Update Interim Step 1

S210 v5.0.0

Bootloader v2

SoftDevice
Image Update

Result

S210 v5.0.0

Bootloader v2

App v3

Notes:

 Bootloader v1 compatible for use with S210 v4.0.1 and S310 v2.0.1

 Bootloader v2 compatible for use with S210 v5.0.0 and S310 v3.0.0

 Application v1 compatible with S210 V4.0.1

 Application v2 compatible with S310 v2.0.1

 Application v3 compatible with S210 v5.0.0

S210_nrf51422_4.0.0

This section describes how to migrate to s210_nrf51422_4.0.0 from s210_nrf51422_3.0.0

Required changes

SoftDevice size

The size of the SoftDevice has changed to accommodate the inclusion of the Master Boot Record (MBR).
The required application project file changes are as follows:

Example Keil project properties under ‘Target’ tab:

 Change IROM1 Start to 0xD000

 Ensure that IROM1 size is no more than 0x33000

If the project uses a scatter file instead of the settings from the Target tab, the scatter file must be
updated accordingly.

Disabled SoftDevice reserved RAM requirement changes:

The RAM requirement when the SoftDevice is disabled has been increased in order to support interrupt
forwarding to be done by the MBR.

 Applications wishing to use the available RAM when the SoftDevice is disabled must not

overwrite the first 8 bytes of RAM.

s210_nrf51422_3.0.0 SoftDevice
Disabled RAM requirements

s210_nrf51422_4.0.0 SoftDevice
Disabled RAM requirements

Size 4 bytes 8 bytes

Application useable
RAM start address

0x2000 0004 0x2000 0008

SVC number changes:

A limited set of SVC numbers have changed. The application is required to be re-compiled against the
new headers.

sd_ant_prox_search_set() now takes an additional argument:

 uint8_t ucCustomProxThreshold parameter allows applications to specify a custom

minimum RSSI threshold value instead of using predefined ANT indexed values in

uint8_t ucProxThreshold. The custom value is only applied if the uint8_t

ucProxThreshold is set with the PROXIMITY_THRESHOLD_CUSTOM bit. If the custom

proximity field is not used, set it to 0.

Redirecting interrupts to an application from a bootloader has changed:

 sd_softdevice_forward_to_application() has been replaced with

sd_softdevice_vector_table_base_set(address).

Interrupts can now be directed to anywhere in the application flash area. This also enables using more
than one application. See the SoftDevice API documentation for details on how to use this call.

The Radio Disable API functionality has been replaced by the Concurrent Multiprotocol Timeslot API:

The functionality of the previous Radio Disable API, which allowed the application to schedule timeslots of
radio inactivity, is now a part of the new Concurrent Multiprotocol Timeslot API feature set.

 nrf_radio_disable.h header file removed. Definitions consolidated into nrf_soc.h.

 nrf_radio_request_t parameter type used in sd_radio_request() has been

changed.

o Structure of nrf_radio_request_t has changed to support two request types as

defined by request_type field: nrf_radio_request_normal_t and

nrf_radio_request_earliest_t.

o Use nrf_radio_request_earliest_t and set timeout_us = 100000Linstead

of using distance_us = 0 in a normal request type).

o The member hfclk replaces nrf_radio_request_reserved1 and should be set

to NRF_RADIO_HFCLK_CFG_DEFAULT.

 The nrf_radio_signal_callback_return_param_t return parameter type has

changed.

o return_code field has been renamed to callback_action.

Refer to the SoftDevice API documentation for more details.

New functionality

The SoftDevice hex file no longer contains the SoftDevice size in UICR.CLENR0 register:

The SoftDevice region size is no longer specified in the UICR.CLENR0 in order to allow full flexibility in
SoftDevice size changes for Device Firmware Updates. However, memory protection can be enabled
during development to detect illegal memory/peripheral accesses.

 If programming the SoftDevice using nRFgo Studio 1.17 or newer, use the “Enable

SoftDevice protection” checkbox in “Program SoftDevice” dialog to enable/disable

protection.

 If programming using nrfjprog.exe version 5.1.1 or newer, using the --programs option

will enable protection. Specifying --programs --dfu will disable protection.

Multiprotocol Timeslot API features not previously available in Radio Disable API:

The Concurrent Multi-Protocol Timeslot API implementation enables the application to schedule timeslots.
During a timeslot the SoftDevice gives control over the RADIO and TIMER0 hardware peripherals to the
application. This feature can be used to implement a separate radio protocol in application space that
can run concurrently with the SoftDevice protocol, or to schedule timeslots where the SoftDevice is
guaranteed to be idle, for example to improve latency for the application, or to reduce peak power
consumption.

From the previous Radio Disable API feature, the Multiprotocol Timeslot API introduces more flexible
scheduling options that allow applications to:

 Perform radio and timer0 operations during session callback.

 Tail chain radio session requests from a previous session callback.

 Manage ongoing application session activities through the use of session extension

requests.

Existing APIs from Radio Disable feature transferred to Concurrent Timeslot API:

 sd_radio_session_open()

 sd_radio_session_close()

 sd_radio_request()

Existing SoC Events transferred to Concurrent Timeslot API:

 NRF_EVT_RADIO_BLOCKED

 NRF_EVT_RADIO_CANCELED

 NRF_EVT_RADIO_SIGNAL_CALLBACK_INVALID_RETURN

 NRF_EVT_RADIO_SESSION_IDLE

 NRF_EVT_RADIO_SESSION_CLOSED

The following is a list of additions to the Multiprotocol Timeslot API from Radio Disable API:

 Additional p_radio_signal_callback types have been added.

o NRF_RADIO_CALLBACK_SIGNAL_TYPE_TIMER0 - generated whenever

NRF_TIMER0 interrupts occur.

o NRF_RADIO_CALLBACK_SIGNAL_TYPE_RADIO - generated whenever NRF_RADIO

interrupts occur.

o NRF_RADIO_CALLBACK_SIGNAL_TYPE_EXTEND_FAILED - generated whenever

session extension has failed.

o NRF_RADIO_CALLBACK_SIGNAL_TYPE_EXTEND_SUCCEEDED - generated whenever

session extension has succeeded

 Additional return types for nrf_radio_signal_callback_return_param_t have been

added:

o NRF_RADIO_SIGNAL_CALLBACK_ACTION_EXTEND - used to request an extension

to the current timeslot. Timeslot extension parameters must be specified in

extend struct.

o NRF_RADIO_SIGNAL_CALLBACK_ACTION_REQUEST_AND_END - used to request a

new radio timeslot and end the current timeslot. New radio timeslot request

parameters must be specified in request struct.

New LFCLK oscillator sources are available:

The following source types have been introduced:

 NRF_CLOCK_LFCLKSRC_RC_250_PPM_TEMP_1000MS_CALIBRATION

 NRF_CLOCK_LFCLKSRC_RC_250_PPM_TEMP_2000MS_CALIBRATION

 NRF_CLOCK_LFCLKSRC_RC_250_PPM_TEMP_4000MS_CALIBRATION

 NRF_CLOCK_LFCLKSRC_RC_250_PPM_TEMP_8000MS_CALIBRATION

 NRF_CLOCK_LFCLKSRC_RC_250_PPM_TEMP_16000MS_CALIBRATION

The new clock source types use the on-chip RC oscillator to generate a 250 PPM signal. Additional
power saving is achieved by performing calibration at the specified interval only if the temperature has
changed.

Master Boot Record (MBR) API included with SoftDevice:

An MBR API is introduced with the SoftDevice that allows for switching between bootloader(s) and
application(s). In addition, the API can be used to replace the bootloader and SoftDevice when
performing Device Firmware Updates.

 sd_mbr_command(command)

The following command types are supported:

 SD_MBR_COMMAND_COPY_BL - used to copy a new bootloader into place.

 SD_MBR_COMMAND_COPY_SD - used to copy a new SoftDevice into place.

 SD_MBR_COMMAND_INIT_SD - used to initialize SoftDevice from bootloader and enable

interrupt forwarding to it.

 SD_MBR_COMMAND_COMPARE - used to compare flash memory blocks.

 SD_MBR_COMMAND_VECTOR_TABLE_BASE_SET - used to set the address to which the

MRB will forward interrupts.

ANT RSSI proximity can now be configured and used in ANT RX scanning channel:

 Specifying ANT proximity settings or custom RSSI values using the

sd_ant_prox_search_set() API will apply to the ANT RX scanning channel.

When running an ANT RX scanning channel, received packets that do not meet the specified minimum
RSSI threshold will not be sent to the application.

Wildcard IDs can now be used when sending uplink transmission from an ANT RX scanning channel:

Previously, the ID of the target device must be known before uplink transmission from an ANT RX
scanning channel can be sent to it. When implementing a system where the scanning channel has to
receive and reply to multiple devices with different IDs, having to read and set the received ID prior to
sending the reply transmission would result in delayed reply occurring at the next instance of the
matching ID received packet.

In order to reduce the reply latency, the application can now assign wildcard (“0”) channel IDs to an ANT
transmission channel and by pending transmission on that channel, the RX scanning channel will be able
to reply back in the same instance of a received packet. Please note that the transmission channel ID will
be assigned to the matching received ID once this has occurred; therefore the ID must be changed back
to wildcard if the application is intending to reply back to multiple IDs.

Example:

 …Prior channel configuration setup (e.g. RF frequency…etc.).

 sd_ant_channel_id_set (0, 0, 1, 1)

o Channel 0 as RX scanning channel.

o Wildcard device ID for RX scanning channel in order to listen for all device IDs.

 sd_ant_channel_id_set (1, 0, 1, 1)

o Channel 1 used as the RX scanning transmission channel.

o Wildcard device ID to allow transmission to any device ID packet received from

scan.

 sd_ant_broadcast_message_tx(1,8, buf)

o Set pending broadcast transmission on RX scanning transmission channel.

 sd_ant_rx_scan_mode_start(0)

o Open channel RX scanning channel.

o 0 parameter assigned to not listen for only synchronous RX packets.

 EVENT_RX received from channel 0 in application code.

o Indicating data received from scanning channel.

 EVENT_TX received from channel 1 in application code.

o Indicating uplink transmission occurrence of the pending broadcast transmission.

Occurs in the same instance as EVENT_RX.

 sd_ant_channel_id_set (1, 0, 1, 1)

o Re-assign RX scanning transmission channel back to wildcard as the channel ID

of the last received packet would have been assigned to this channel.

 sd_ant_broadcast_message_tx(1,8, buf)

o Prepare next pending broadcast transmission on RX scanning transmission

channel.

 Etc….

ANT asynchronous transmit channel events now occur asynchronously in the presence of other ANT channels.

In previous SoftDevices, when sending a transmission via a channel configured with the
EXT_PARAM_ASYNC_TX_MODE extended channel type in the presence of other running ANT
channels, the transmission would not occur until after the next scheduled ANT activity has run.

This limitation has now been removed. Asynchronous transmissions in the presence of other running
channels will now be performed as soon as possible unless there is insufficient time before the next
scheduled activity, which will then cause the transmission to be performed after the previously scheduled
ANT activity has run.

ANT fast initiation channel now start as soon as possible in the presence of other ANT channels.

In previous SoftDevices, when opening a channel configured with the
EXT_PARAM_FAST_INITATION_MODE extended channel type in the presence of other running ANT
channels, the channel would not start until after the next scheduled ANT activity has run.

This limitation has now been removed. Channels configured with fast channel initiation will now start as
soon as possible unless there is insufficient time before the next scheduled activity, which will then cause
the channel to start after the previously scheduled ANT activity has run.

Improved ANT RX Scanning Channel operation during application flash write/timeslot activity:

ANT RX scanning channel behaviour has been optimized to use more of the available free time around
concurrent application timeslot and flash scheduling activity.

