
s310_nrf51422 migration document

Table of Contents

 Introduction to the s310_nrf51422 migration document

 S310_nrf51422_3.0.0
o Required changes

 Common
 BLE specific
 ANT specific

o New Functionality
 Common
 BLE specific
 ANT specific

o Bootloaders
 BLE specific
 ANT specific

 S310_nrf51422_2.0.0 (updated for version 2.0.1)
o Required changes

 Common
 BLE
 ANT

o New functionality
 Common
 BLE
 ANT

Introduction to the s310_nrf51422
migration document

This document describes how to migrate to a new version of the s310_nrf51422 SoftDevice. The
s310_nrf51422 release notes should be read in conjunction with this document.

For each version, we have the following sections:

 "Required changes" describes how an application would have used the previous version of the
SoftDevice, and how it must now use this version for the given change.

 "New functionality" describes how to use new features and functionality offered by this version of
the SoftDevice. Note: Not all new functionality may be covered; the release notes will contain a
full list of new features and functionality.

Each section describes how to migrate to a given version from the previous version. If you are migrating
to the current version from the previous version, follow the instructions in that section. To migrate
between versions that are more than one version apart, follow the migration steps for all intermediate
versions in consecutive order.

Copyright (c) Nordic Semiconductor ASA. All rights reserved.

S310_nrf51422_3.0.0

This section describes how to migrate to s310_nrf51422_3.0.0 from s310_nrf51422_2.0.1

Required changes

Common

SoftDevice size

 The SoftDevice CODE size remains the same. This results in no change in application CODE
starting address.

 The SoftDevice RAM size has changed resulting in the default application RAM starting address
changing from 0x20002400 to 20002200. In this case, it is not required to change the application
RAM starting address; however, due to application memory cost associated with enabling ANT
channels (described in Default ANT stack channel configuration and availability has changed
under Required changes), changing the application start address may be done to offset some of
the impact in memory constrained designs.

 16kB RAM 32B RAM

 Start Address Size Start Address Size

RAM (IRAM) 0x20002200* 0x1E00 0x20002200* 0x5E00

Flash (IROM 0x1D000 0x23000 0x1D000 0x23000

* Assuming default GATT Server Attribute Table size (see below for details on configuring size)

SVC number changes

The SVC numbers used by the stack have been changed, therefore the application needs to be
recompiled against the new header files. For systems using a bootloader to perform over-the-air device
SoftDevice updates, refer to Bootloaders section.

The NRF_POWER_DCDC_MODES enumeration has been simplified

Instead of the previous OFF, ON and AUTOMATIC modes, it can now only be set

to NRF_POWER_DCDC_DISABLE or NRF_POWER_DCDC_ENABLE. This affects

the sd_power_dcdc_mode_set() SV call. Note that the DC/DC converter is only supported on nRF51

series IC revision 3.

BLE specific

The GATT Server Attribute Table size can now be configured

It is now possible to configure the size of the GATT Server Attribute table by using the

parameter attr_tab_size in ble_gatts_enable_params_t when calling sd_ble_enable().

file:///C:/BLUE/s310_nrf51422/s310_nrf51422_3.0.0-2.alpha/public/s310_nrf51422_3.0.0_migration-document_draft2.docx%23_Default_ANT_stack
file:///C:/BLUE/s310_nrf51422/s310_nrf51422_3.0.0-2.alpha/public/s310_nrf51422_3.0.0_migration-document_draft2.docx%23_Required_changes
file:///C:/BLUE/s310_nrf51422/s310_nrf51422_3.0.0-2.alpha/public/s310_nrf51422_3.0.0_migration-document_draft2.docx%23_Bootloaders

Configuration of the Attribute Table size is optional. The default Attribute Table size (0x700 bytes) will be

used if attr_tab_size is set to BLE_GATTS_ATTR_TAB_SIZE_DEFAULT. The default size is equal to

the Attribute Table size in previous version of the S110 SoftDevice.

If the application wants to use an Attribute Table size different from the default one, the linker
configuration of the application must be changed accordingly to match the total amount of RAM used by
the SoftDevice. The following formula can be used to calculate the amount of RAM that the SoftDevice
(together with the MBR) will use and therefore the address in RAM where the application memory area
begins:

SoftDevice RAM size = (0x1B00 + attr_tab_size) default: 0x2200

The address at which the application memory area begins is therefore:

Application RAM begin = (0x20001B00 + attr_tab_size) default: 0x20002200

ble_gap_adv_params_t now contains an additional channel_mask field that must be

filled in

When calling sd_ble_gap_adv_start(), a pointer to an instance of ble_gap_adv_params_t must

be provided. This structure now contains an additional field (channel_mask) allowing the application to

disable specific advertising channels, which must be filled in by the application. To enable all advertising
channels simply set this whole field to zero. The SoftDevice behavior will then remain unchanged from
previous versions.

The BLE_GAP_EVT_CONNECTED event now includes the device's own address

The new own_addr field in the ble_gap_evt_connected_t structure allows the application to find out

which address was used to establish a particular connection, which can be useful when using privacy
features.

The GAP options member name has changed

The ble_gap_opt_t instance inside ble_opt_t has been renamed from gap to gap_opt.

The GAP advertising timeout source macro has been renamed

The BLE_GAP_TIMEOUT_SRC_ADVERTISEMENT macro has been renamed

to BLE_GAP_TIMEOUT_SRC_ADVERTISING.

The connection RSSI interface has been expanded

Two new parameters to the sd_ble_gap_rssi_start() SV call, threshold_dbm and skip_count,

now allow the application to specify how often and under which conditions it wishes to receive connection
RSSI events from the SoftDevice. Set these new parameters to 0 if you wish to receive the same number
of events as with previous versions of the SoftDevice.

The new sd_ble_gap_rssi_get() SV call allows applications to poll the connection RSSI of the last

connection interval.

The maximum value for slave latency has been reduced

The BLE_GAP_CP_SLAVE_LATENCY_MAX value has been changed from 0x03E8 to 0x01F3 to comply

with versions 4.1 and above of the Bluetooth specification.

The security APIs have been redesigned and improved

All the application-facing security interfaces have been modified for improved speed, memory efficiency,
future-proofing, and compatibility with other SoftDevice series. All application developers will have to
adapt to the new security APIs.

Key distribution selection is now configurable by the application

Two instances of a new ble_gap_sec_kdist_t structure are now part

of ble_gap_sec_params_t and allow the application to select which keys will be distributed by each

side during a bonding procedure. Applications are therefore now required to carefully select which keys
will be necessary during the bond's lifetime. The application should check the keys requested by the

peer (propagated to the application inside the ble_gap_sec_params_t present in

the ble_gap_evt_sec_params_request_t structure) before finally selecting the exchanged keys.

The key selection needs to be included in the security parameters passed

to sd_ble_gap_sec_params_reply().

The recommended key distribution selection for applications is shown below. This will distribute the LTK
and IRK in both directions when bonding and only when requested by the peer:

case BLE_GAP_EVT_SEC_PARAMS_REQUEST:

if(bonding)

{

peer_params = p_ble_evt->evt.gap_evt.params.sec_params_request.peer_params;

 own_params.kdist_periph.enc = peer_params.kdist_periph.enc;

 own_params.kdist_periph.id = peer_params.kdist_periph.id;

 own_params.kdist_periph.sign = 0;

 own_params.kdist_central.enc = peer_params.kdist_central.enc;

 own_params.kdist_central.id = peer_params.kdist_central.id;

 own_params.kdist_central.sign = 0;

 sd_ble_gap_sec_params_reply(.., &own_params, ...);

}

break;

To emulate the behavior of previous SoftDevices, the key selection would be

performed as follows:

case BLE_GAP_EVT_SEC_PARAMS_REQUEST:

if(bonding)

{

peer_params = p_ble_evt->evt.gap_evt.params.sec_params_request.peer_params;

 own_params.kdist_periph.enc = peer_params.kdist_periph.enc;

 own_params.kdist_periph.id = peer_params.kdist_periph.id;

 own_params.kdist_periph.sign = 0;

 own_params.kdist_central.enc = 0;

 own_params.kdist_central.id = peer_params.kdist_central.id;

 own_params.kdist_central.sign = peer_params.kdist_central.sign;

 sd_ble_gap_sec_params_reply(.., &own_params, ...);

}

break;

The application can no longer specify a timeout for security procedures

The timeout field has been removed from ble_gap_sec_params_t, and the timeout length is now set

internally by the stack according to the specification.

All encryption keys are now identified using EDIV/RAND pairs

The former LTK identifier, div, has now been removed from ble_gap_enc_info_t and instead LTKs

are now identified using a ble_gap_master_id_t instance (EDIV/RAND pair). The application must

now use the new master_id field in the ble_gap_evt_sec_info_request_t instead of the

former div field to uniquely identify the LTK for that peer device.

Exchanged keys are now stored directly in application-provided memory

The application now supplies pointers to memory to store exchanged keys instead of receiving them in

the BLE_GAP_EVT_AUTH_STATUS event. A number of changes are made to support this:

 Two new structures have been added to the API for this

purpose, ble_gap_enc_key_t and ble_gap_id_key_t.

 The ble_gap_sec_keys_t has been refactored from a bitfield into a set of pointers to keys in

application memory. p_enc_key, p_id_key and p_sign_key are all pointers that must be

initialized by the application to point to its own instances of key structures in memory.

 A new structure, ble_gap_sec_keyset_t, has been introduced and is required as a parameter

to sd_ble_gap_sec_params_reply(). This allows the application to provide the dual set of

pointers to the stack (one for each of the devices participating in the bonding procedure). The
keys are stored directly in the application's instances as soon as they are received over-the-air or
generated and sent.

Please note that a special exception applies to the IRK distributed by the peripheral

(ble_gap_sec_keyset_t::keys_periph::p_id_key). If this p_id_key pointer is initialized to a

valid value, the IRK and device address pointed to will be distributed over the air by the SoftDevice to the

peer device. If, however, the application sets p_id_key to NULL, the device's currently configured IRK and

device address will be distributed. Most applications will want to set this pointer to NULL unless they plan

to provide their own IRK and device address instead of using the one generated by the SoftDevice or
configured using the BLE_GAP_OPT_PRIVACY option and the sd_ble_gap_address_set() SV call.

The authentication (pairing or bonding) procedure result structure has been revamped

The existing ble_gap_evt_auth_status_t structure, which encapsulates

a BLE_GAP_EVT_AUTH_STATUS event, has been modified to fit the new key storage model. A

new bonded field has been added that allows the application to check whether the procedure ended up in

the generation of a new bond. A new structure, ble_gap_sec_kdist_t, which is simply a bitfield of the

keys distributed during a bonding procedure, has been added to the API. Two instances of it have been

included in the ble_gap_evt_auth_status_t structure as

the kdist_periph and kdist_central fields. The application can check those new fields to find out

which keys ended up being distributed during the bonding procedure after it has completed.

The security information reply now accepts IRKs:

The existing sd_ble_gap_sec_info_reply() SV call now takes an additional parameter in the form

of p_id_info, a pointer to an optional IRK. This can be set to NULL by the application as it's currently

ignored by the SoftDevice.

The GATTS set and get operations for local values have changed

The new function prototypes require a connection handle (since this is required for certain multi-value

attributes) and also use a new structure ble_gatts_value_t for parameter input:

 sd_ble_gatts_value_set(uint16_t conn_handle, uint16_t handle,

ble_gatts_value_t *p_value)

 sd_ble_gatts_value_get(uint16_t conn_handle, uint16_t handle,

ble_gatts_value_t *p_value)

The GATTS set and get operations for system attributes have changed

The new function prototypes include an additional parameter, flags, to allow for partial retrieval or

storage of system attributes. If the application does not want to make use of this new functionality, it can
simply set the flags parameter to 0.

 sd_ble_gatts_sys_attr_set(uint16_t conn_handle, uint8_t const

*p_sys_attr_data, uint16_t len, uint32_t flags)

 sd_ble_gatts_sys_attr_get(uint16_t conn_handle, uint8_t

*p_sys_attr_data, uint16_t *p_len, uint32_t flags)

The GATTC write parameters have been modified

The field flags within the ble_gattc_write_params_t has been moved up in the structure for better

alignment.

ANT specific

Default ANT stack channel configuration and availability has changed

In previous SoftDevices supporting ANT, the total number of channels supported has been statically
defined and the required memory pre-allocated. This SoftDevice introduces the capability for applications
to tailor and scale the following ANT stack options using an ANT Stack Enable Configuration API.
Applications will need to configure the stack specifically.

ANT Stack Enable Configuration:

 Total number of ANT channels

 Number of encrypted channels

 Transmit burst queue size

The stack options are specified using the new API:

uint32_t sd_ant_enable(ANT_ENABLE * const pstChannelEnable)

 Returns NRF_SUCCESS if parameters were accepted; NRF_ERROR_INVALID_PARAM
otherwise

 Call after enabling Softdevice, sd_softdevice_enable(), and before any ANT related

functions

 Usage of this API is optional, except as noted below

Upon calling sd_softdevice_enable(), the ANT stack defaults to supporting 1 ANT channel (with

encryption support) and a 64 byte transmit burst buffer. If advanced features (additional
channels, encrypted channels, larger TX burst buffers) are needed by the application,
then sd_ant_enable() must be used to specify the desired configuration. Application RAM memory must
be supplied to the SoftDevice in order to increase the aforementioned stack options beyond the default
configuration.

The ANT_ENABLE input structure consists of:

 ucTotalNumberOfChannels – total number of channels desired by the application (1 to 15)

 ucNumberOfEncryptedChannels – total number of encrypted ANT channels desired by the
application (0 to ucTotalNumberOfChannels)

 pucMemoryBlockStartLocation – pointer to the RAM buffer location supplied by the application.
Memory buffer is reserved for use by the SoftDevice in order to support specified ANT stack
configuration.

 usMemoryBlockByteSize – size of provided memory buffer location by the application

The value of usMemoryBlockByteSize can be determined by using the provided macro definition in the
ant_parameters.h header file.

 #define ANT_ENABLE_GET_REQUIRED_SPACE (ucTotalNumberOfChannels,

ucNumberOfEncryptedChannels, usTxQueueByteSize)

o Note: usTxQueueByteSize should be 64, 128 or 256 bytes.

Usage example:

To specify the same ANT stack options supported in previous SoftDevices (For example: S310 v2.0.1,
S210 v4.0.1):

 8 ANT channels

 1 encrypted channel

 128 byte TX burst buffer

#define ANT_NUM_TOTAL_CHANNELS 8

#define ANT_NUM_ENCRYPTED_CHANNELS 1

#define ANT_TX_BURST_QUEUE_SIZE 128

static ANT_ENABLE stANTEnableParams;

static uint8_t aucANTEnableMem[ANT_ENABLE_GET_REQUIRED_SPACE(ANT_NUM_TOTAL_CHANNELS,

ANT_NUM_ENCRYPTED_CHANNELS, ANT_TX_BURST_QUEUE_SIZE)];

// configure ANT stack options

stANTEnableParams.ucTotalNumberOfChannels = ANT_NUM_TOTAL_CHANNELS;

stANTEnableParams.ucNumberOfEncryptedChannels = ANT_NUM_ENCRYPTED_CHANNELS;

stANTEnableParams.pucMemoryBlockStartLocation = aucANTEnableMem;

stANTEnableParams.usMemoryBlockByteSize =

ANT_ENABLE_GET_REQUIRED_SPACE(ANT_NUM_TOTAL_CHANNELS, ANT_NUM_ENCRYPTED_CHANNELS,

ANT_TX_BURST_QUEUE_SIZE);

// enable softdevice

ulErrorCode = sd_softdevice_enable(NRF_CLOCK_LFCLKSRC_XTAL_50_PPM,

softdevice_assert_callback);

// enable ANT stack options

ulErrorCode = sd_ant_enable(&stANTEnableParams);

// ... configure and use ANT channels ...etc

New Functionality

Common

The SoftDevice info structure is now documented

A set of new macros has been introduced to access the SoftDevice info structure directly from hex or bin
SoftDevice images. This can be useful when doing device firmware upgrades or when generic information

about a SoftDevice in binary form is to be retrieved. See nrf_sdm.h for details on the new macros listed

below.

 MBR_SIZE

 SOFTDEVICE_INFO_STRUCT_OFFSET

 SOFTDEVICE_INFO_STRUCT_ADDRESS

 SOFTDEVICE_INFO_STRUCT_OFFSET

 SD_FWID_OFFSET

 SD_SIZE_GET()

 SD_FWID_GET()

BLE specific

Scan Request reports are now available

An application can now request to receive events whenever an observer issues a scan request by using

the new BLE_GAP_OPT_SCAN_REQ_REPORT option. The scan request reports will be propagated to the

application through the new ble_gap_evt_scan_req_report_t, and more information on the feature

can be found under the documentation for the new option

structure ble_gap_opt_scan_req_report_t.

The connection channel map is now retrievable

Applications can now retrieve the channel map used for connections by using the

new BLE_GAP_OPT_CH_MAP option. This feature is completely independent of the advertising channel

mask listed in the "Required changes" section of this document. See documentation

of ble_gap_opt_ch_map_t for more information.

ANT specific

Increased total number of channels supported

The maximum number of channels supported by the ANT stack has been increased from 8 to 15. The
default number of channels supported by the ANT stack upon enabling the SoftDevice is 1. Each
additional channel requires SIZE_OF_NON_ENCRYPTED_ANT_CHANNEL bytes of memory as defined
in ant_parameters.h.

For details on how to enable additional channels, refer to Default ANT stack channel configuration and
availability has changed under Required changes section.

Increased number of channels supporting encryption

The maximum number of encrypted channels supported by the ANT stack has been increased from 1 to
15. The number of encrypted channels cannot exceed the total number of ANT channels configured. The
default number of encrypted channels supported by the ANT stack upon enabling the SoftDevice is 1.
Each additional encryption channel supported requires SIZE_OF_ENCRYPTED_ANT_ANT_CHANNEL
bytes of memory as defined in ant_parameters.h. This is an additional memory cost on top of
SIZE_OF_NON_ENCRYPTED_ANT_CHANNEL bytes required to support an ANT channel.

For details on how to enable additional encrypted channels, refer to Default ANT stack channel
configuration and availability has changed under Required changes section.

Increased supported number of encryption keys

The number of encryption keys supported now increase proportionally to the number of encrypted
channels configured. The following APIs are no longer bound to 1 key and may use a key index
(ucKeyNum) that is bounded between [0 to (numEncryptedChannels – 1)], where numEncryptedChannels
> 1.

 sd_ant_crypto_channel_enable()

 sd_ant_crypto_key_set()

Encryption channel pool

An available encryption channel pool is created for the number of encryption channels desired by the
application. It represents the total number of channels allowed to run concurrently with encryption
enabled. Any ANT channel may enable encryption as long as the available encryption channel pool is not
fully used. Encryption channel pool usage example is shown below:

//.. ANT stack configured for total 8 channels, 2 encrypted channels

// total available encryption channel pool = 2

ulErrorCode = sd_ant_crypto_channel_enable(0, 1, 0, 1); // channel 0 encrypt enable

if (ulErrorCode == NRF_SUCCESS)

{

 // Successful API call, available encryption pool reduced by 1

 // total available encryption channel pool = 1

}

ulErrorCode = sd_ant_crypto_channel_enable(7, 1, 7, 1); // channel 7 encrypt enable

if (ulErrorCode == NRF_SUCCESS)

{

file:///C:/BLUE/s310_nrf51422/s310_nrf51422_3.0.0-2.alpha/public/s310_nrf51422_3.0.0_migration-document_draft2.docx%23_Default_ANT_stack
file:///C:/BLUE/s310_nrf51422/s310_nrf51422_3.0.0-2.alpha/public/s310_nrf51422_3.0.0_migration-document_draft2.docx%23_Default_ANT_stack
file:///C:/BLUE/s310_nrf51422/s310_nrf51422_3.0.0-2.alpha/public/s310_nrf51422_3.0.0_migration-document_draft2.docx%23_Required_changes
file:///C:/BLUE/s310_nrf51422/s310_nrf51422_3.0.0-2.alpha/public/s310_nrf51422_3.0.0_migration-document_draft2.docx%23_Default_ANT_stack
file:///C:/BLUE/s310_nrf51422/s310_nrf51422_3.0.0-2.alpha/public/s310_nrf51422_3.0.0_migration-document_draft2.docx%23_Default_ANT_stack
file:///C:/BLUE/s310_nrf51422/s310_nrf51422_3.0.0-2.alpha/public/s310_nrf51422_3.0.0_migration-document_draft2.docx%23_Required_changes

 // Successful API call, available encryption pool reduced by 1

 // total available encryption channel pool = 0

}

// ...

ulErrorCode = sd_ant_crypto_channel_enable(0, 0, 3, 1); // channel 0 encrypt disable

if (ulErrorCode == NRF_SUCCESS)

{

 // Successful API call, available encryption pool increased by 1

 // total available encryption channel pool = 1

}

Note: Successful or failed encryption negotiations reported by ANT events:
EVENT_ENCRYPT_NEGOTIATION_SUCCESS and EVENT_ENCRYPT_NEGOTIATION_FAIL have no
effect on encrypted channel pool status. Encrypted channel pool assignment/un-assignment are handled
strictly by the sd_ant_crypto_channel_enable() API.

Transmit burst queue size configurability

The transmit burst queue is used by the ANT stack in order for buffer packets to be sent during burst
transfers. The size of the burst queue does not represent the maximum burst transfer size. Its use is to
help manage and source data packets from the application to the over-the-air ANT transfer protocol in a
timely manner and help offset application processing latency. Calls made to
sd_ant_burst_handler_request() API result in filling this buffer.

In previous SoftDevices, the transmit burst queue size was fixed at 128 bytes. With the introduction of the
ANT stack enable configuration interface, the transmit burst queue size can be adjusted via the
sd_ant_enable() API. The default queue size upon enabling the SoftDevice is 64 bytes.

Size of the transmit burst queue cannot be less than 64 bytes and no greater than 256 bytes and must be
a value that is a power of 2. For details on how to allocate transmit burst queue size, refer to Default ANT
stack channel configuration and availability has changed under Required changes section.

Bootloaders

BLE specific

There are no BLE specific bootloader changes since the 2.0.0 release.

ANT specific

For systems using a bootloader to perform over-the-air firmware updates using ANT, users must first
verify the compatibility of the existing bootloader with this SoftDevice. Bootloaders built with the previous
SoftDevice versions (eg. S310 v2.0.1, S210 v4.01) will not be compatible with this SoftDevice due to
changes in the SVC numbering and ordering.

If not compatible, bootloaders must recompiled with the updated SoftDevice headers (along with any
other potential changes reflecting bootloader compatibility and/or identification such as version strings).

file:///C:/BLUE/s310_nrf51422/s310_nrf51422_3.0.0-2.alpha/public/s310_nrf51422_3.0.0_migration-document_draft2.docx%23_Default_ANT_stack
file:///C:/BLUE/s310_nrf51422/s310_nrf51422_3.0.0-2.alpha/public/s310_nrf51422_3.0.0_migration-document_draft2.docx%23_Default_ANT_stack
file:///C:/BLUE/s310_nrf51422/s310_nrf51422_3.0.0-2.alpha/public/s310_nrf51422_3.0.0_migration-document_draft2.docx%23_Required_changes

When performing over-the-air updates, both bootloader and SoftDevice must be upgraded at the same
time using a combined image.

Since the flash size on the nRF51 restricts combined SoftDevice S310 + Bootloader updates, a temporary
swap to the latest compatible S210 SoftDevice must take place first, before updating to the new S310
SoftDevice.

The following depicts the supported upgrade paths to the new S310 SoftDevice when performing over-
the-air firmware updates using an ANT bootloader (eg. ANT-WP bootloader).

Updating from S210 v4.0.1 to S310 v3.0.0

Updating from S310 v2.0.1 to S310 v3.0.0

Notes:

 Bootloader v1 compatible for use with S210 v4.0.1 and S310 v2.0.1

 Bootloader v2 compatible for use with S210 v5.0.0 and S310 v3.0.0

 Application v1 compatible with S210 V4.0.1

 Application v2 compatible with S310 v2.0.1

 Application v3 compatible with S310 v3.0.0

S310_nrf51422_2.0.0 (updated for
version 2.0.1)

This section describes how to migrate to s310_nrf51422_2.0.0 from s310_nrf51422_1.0.0.

The S310 SoftDevice HEX file in version 2.0.1 is identical to version 2.0.0. This document has been
updated for version 2.0.1 to include additional information on the sd_ant_cw_test_mode() function.

Required changes

Common

SoftDevice size

The reserved code size of the SoftDevice has been changed to free up more code space for the
application. The application scatter file or the Keil target settings must be updated to the following values:

 16 kB RAM 32 kB RAM

 Start address Size Start address Size

RAM (IRAM) 0x20002400 0x1C00 0x20002400 0x5C00

Flash (IROM) 0x1D000 0x23000 0x1D000 0x23000

However, if the SoftDevice is disabled, the RAM available to the application can start
at 0x20000008 instead of 0x20000004. The additional four bytes have been added to support interrupt
forwarding performed by the Master Boot Record (MBR).

 16 kB RAM 32 kB RAM

 Start address Size Start address Size

RAM (IRAM) 0x20000008 0x3FF8 0x20000008 0x7FF8

Flash (IROM) 0x1D000 0x23000 0x1D000 0x23000

Note: The available RAM start address with the SoftDevice disabled has increased by 4 bytes
(from 0x20000004 to 0x20000008) in this version of the SoftDevice.

SVC numbers

The SVC numbers in use by the stack have been changed. Applications must recompile against new
header files to work with the new SoftDevice.

Redirecting interrupts to an application from a bootloader

The function sd_softdevice_forward_to_application() has been replaced with

sd_softdevice_vector_table_base_set(). Interrupts can now be directed to anywhere in the

application flash area.

Radio Disable API replaced by Concurrent Multiprotocol Timeslot API

The functionality of the previous Radio Disable API, which allowed the application to schedule timeslots of
radio inactivity, is now a part of the new Concurrent Multiprotocol API feature set. This involves the
following changes:

 The nrf_radio_disable.h header has been removed. Definitions are now consolidated into

nrf_soc.h.

 The nrf_radio_request_t parameter type used in sd_radio_request() has been

changed:

o Structure of nrf_radio_request_t has changed to support two request types as

defined by request_type field: nrf_radio_request_normal_t and

nrf_radio_request_earliest_t.

o To schedule a radio event as soon as possible,

use nrf_radio_request_earliest_t with timeout_us = 100000L. Previously

this was achieved by using a normal nrf_radio_request_t and setting

distance_us = 0.

o The member hfclk replaces nrf_radio_request_reserved1 and should be set to

NRF_RADIO_HFCLK_CFG_DEFAULT.

 The nrf_radio_signal_callback_return_param_t type has changed:

o return_code field has been renamed to callback_action.

Existing APIs from the Radio Disable API have been moved to the Concurrent Multiprotocol Timeslot API:

 sd_radio_session_open()

 sd_radio_session_close()

 sd_radio_request()

Existing SoC events from the Radio Disable API have been moved to the Concurrent Multiprotocol
Timeslot API:

 NRF_EVT_RADIO_BLOCKED

 NRF_EVT_RADIO_CANCELED

 NRF_EVT_RADIO_SIGNAL_CALLBACK_INVALID_RETURN

 NRF_EVT_RADIO_SESSION_IDLE

 NRF_EVT_RADIO_SESSION_CLOSED

Refer to the SoftDevice API documentation for more details.

BLE

sd_ble_enable()

An additional call has to be made after sd_softdevice_enable() before any BLE related functionality

in the SoftDevice can be used:

 sd_ble_enable(p_ble_enable_params)

Using this call, the application can select whether to include the Service Changed characteristic in the
GATT Server. The default in all previous releases has been to include the Service Changed

characteristic, but this affects how GATT clients behave. Specifically, it requires clients to subscribe to
this attribute and not to cache attribute handles between connections unless the devices are bonded. If
the application does not need to change the structure of the GATT server attributes at runtime, this adds
unnecessary complexity to the interaction with peer clients. If the SoftDevice is enabled with the Service
Changed Characteristics turned off, then clients are allowed to cache attribute handles making
applications simpler on both sides. See the SoftDevice API documentation for details.

Due to an issue present in this release, the application is required to set the device address to the
factory default right after calling sd_ble_enable(), this can be achieved with the following lines:

sd_ble_enable(p_ble_enable_params);

sd_ble_gap_address_get(&addr);

sd_ble_gap_address_set(BLE_GAP_ADDR_CYCLE_MODE_NONE, &addr);

sd_ble_gap_address_set()

sd_ble_gap_address_set() now takes an additional argument which is used to describe the private

address cycle mode, addr_cycle_mode. The new prototype is:

 uint32_t sd_ble_gap_address_set(uint8_t addr_cycle_mode, ble_gap_addr_t

const * const p_addr)

The addr_cycle_mode argument can be one of:

 BLE_GAP_ADDR_CYCLE_MODE_NONE

 BLE_GAP_ADDR_CYCLE_MODE_AUTO

To set all types of device addresses explicitly as with earlier versions of the SoftDevice, use

sd_ble_gap_address_set(BLE_GAP_ADDR_CYCLE_MODE_NONE, p_addr)

To let the SoftDevice automatically cycle private addresses as defined by Bluetooth Core specification
4.1, use

sd_ble_gap_address_set(BLE_GAP_ADDR_CYCLE_MODE_AUTO, p_addr)

where p_addr->addr_type is

either BLE_GAP_ADDR_TYPE_RANDOM_PRIVATE_RESOLVABLE or BLE_GAP_ADDR_TYPE_RANDOM_PR

IVATE_NON_RESOLVABLE.

sd_ble_gap_authenticate()

The function sd_ble_gap_authenticate() can now return an additional error code

NRF_ERROR_TIMEOUT to indicate an SMP timeout.

ANT

sd_ant_prox_search_set()

The sd_ant_prox_search_set() function now takes an additional

argument: ucCustomProxThreshold. The new prototype is:

 uint32_t sd_ant_prox_search_set(uint8_t ucChannel, uint8_t

ucProxThreshold, uint8_t ucCustomProxThreshold)

The ucCustomProxThreshold parameter allows applications to specify a custom minimum RSSI

threshold value instead of using predefined ANT indexed values in ucProxThreshold. The custom

value only applies if the PROXIMITY_THRESHOLD_CUSTOM bit is set in ucProxThreshold. Set

ucCustomProxThreshold to 0 if unused.

sd_ant_cw_test_mode()

The sd_ant_cw_test_mode() function now takes an additional argument: ucMode. The old and new

prototype is seen below.

 uint32_t sd_ant_cw_test_mode(uint8_t ucRadioReq, uint8_t ucTxPower,

uint8_t CustomTxPower)

 uint32_sd_ant_cw_test_mode(uint8_t ucRadioReq, uint8_t ucTxPower,

uint8_t CustomTxPower, uint8_t ucMode)

The ucMode parameter allows the application to specify the ANT CW test mode where a value of 0

denotes TX carrier transmission test mode (original test mode) and a value of 1 denotes TX continuous
modulated transmission test mode (new test mode).

New functionality

Common

SoftDevice size removed from UICR.CLENR0

The SoftDevice HEX file no longer contains the SoftDevice size in the UICR.CLENR0 register. This

means that the Memory Protection Unit is no longer configured to protect the SoftDevice code, memory
space and protected peripherals, unless this is deliberately enabled. Memory protection must be disabled
to allow Device Firmware Upgrade of the SoftDevice. However, it may be useful to have the protection
enabled during development to ease the detection of illegal memory and peripheral accesses.

For device programming with nRFgo Studio 1.17 or newer, in the Program SoftDevice tab, check
Enable SoftDevice protection to enable or disable the protection.

For device programming with nrfjprog version 5.1.1 or newer, append the --dfu command line option

with --programs to disable memory protection. For example:

nrfjprog --programs softdevice.hex --dfu # This will disable memory protection and

program SoftDevice.

nrfjprog --programs softdevice.hex # This will enable memory protection and

program SoftDevice.

Concurrent Multiprotocol Timeslot API

A new Concurrent Multiprotocol Timeslot API has been introduced, replacing the Radio Disable API. This

enables an application to schedule timeslots in which the SoftDevice releases the RADIO and TIMER0

hardware peripherals to the application. This feature can be used to implement a separate radio protocol

in application space that can run concurrently with a SoftDevice protocol, or to schedule timeslots where
the SoftDevice is guaranteed to be idle to improve latency or reduce peak power consumption.

The following is a list of additions to the Concurrent Multiprotocol Timeslot API, not present in the
previous Radio Disable API.

 Additional p_radio_signal_callback_types have been added:

o NRF_RADIO_CALLBACK_SIGNAL_TYPE_TIMER0 - generated whenever NRF_TIMER0

interrupts occur.

o NRF_RADIO_CALLBACK_SIGNAL_TYPE_RADIO - generated whenever NRF_RADIO

interrupts occur.

o NRF_RADIO_CALLBACK_SIGNAL_TYPE_EXTEND_FAILED - generated whenever

session extension has failed.

o NRF_RADIO_CALLBACK_SIGNAL_TYPE_EXTEND_SUCCEEDED - generated whenever

session extension has succeeded.

 Additional return types for nrf_radio_signal_callback_return_param_t have been

added:

o NRF_RADIO_SIGNAL_CALLBACK_ACTION_EXTEND - used to request an extension to

the current timeslot. Timeslot extension parameters must be specified in extend struct.

o NRF_RADIO_SIGNAL_CALLBACK_ACTION_REQUEST_AND_END - used to request a new

radio timeslot and end the current timeslot. New radio timeslot request parameters must
be specified in request struct.

See the SoftDevice Specification document and the SoftDevice API documentation for details and
guidelines on how to use the new features.

New LFCLK oscillator sources

The following oscillator clock sources have been added for the LFCLK:

 NRF_CLOCK_LFCLKSRC_RC_250_PPM_TEMP_1000MS_CALIBRATION

 NRF_CLOCK_LFCLKSRC_RC_250_PPM_TEMP_2000MS_CALIBRATION

 NRF_CLOCK_LFCLKSRC_RC_250_PPM_TEMP_4000MS_CALIBRATION

 NRF_CLOCK_LFCLKSRC_RC_250_PPM_TEMP_8000MS_CALIBRATION

 NRF_CLOCK_LFCLKSRC_RC_250_PPM_TEMP_16000MS_CALIBRATION

The new clock source types use the on-chip RC oscillator to generate a 250 PPM clock signal. Additional
power saving is achieved by performing calibration at the specified interval only if the temperature has
changed.

Master Boot Record (MBR) API

An MBR API is introduced with the SoftDevice that allows for switching between bootloader(s) and
application(s). In addition, the API can be used to replace the bootloader and SoftDevice when
performing Device Firmware Updates. The MBR exposes one function:

 sd_mbr_command(command)

The following command types are supported:

 SD_MBR_COMMAND_COPY_BL - used to copy a new bootloader into place.

 SD_MBR_COMMAND_COPY_SD - used to copy a new SoftDevice into place.

 SD_MBR_COMMAND_INIT_SD - used to initialize SoftDevice from bootloader and enable

interrupt forwarding to it.

 SD_MBR_COMMAND_COMPARE - used to compare flash memory blocks.

 SD_MBR_COMMAND_VECTOR_TABLE_BASE_SET - used to set the address that the MBR will

forward interrupts to.

BLE

Options API

The SoftDevice now includes a new Options API to allow the application to set and get advanced
configuration options. The API exposes two functions:

 sd_ble_opt_get()

 sd_ble_opt_set()

The following options are defined in this version of the SoftDevice:

 BLE_COMMON_OPT_RADIO_CPU_MUTEX can be used to configure application access to the CPU

while the radio is active.

 BLE_GAP_OPT_LOCAL_CONN_LATENCY can be used to override the connection latency specified

by the central.

 BLE_GAP_OPT_PASSKEY can be used to specify a 6-digit display passkey that will be used

during pairing instead of a randomly generated one.

 BLE_GAP_OPT_PRIVACY can be used to tune the behavior of the SoftDevice when advertising

with private addresses.

See the SoftDevice API documentation for details on how to use the Options API.

New advertising data types

The SoftDevice now has built-in support for more advertising data types. See ble_gap.h for the full list

of supported advertising data types.

ANT

RSSI proximity now supported in Continous Scanning Mode

Specifying ANT proximity settings or custom RSSI values using the sd_ant_prox_search_set() API will

now apply to a channel opened with sd_ant_rx_scan_mode_start(). Received packets that do not

meet the specified minimum RSSI threshold will not be sent to the application.

Transmission from continuous scanning device now supports wild card ID parameters

In order to allow continuous scanning devices to respond to incoming messages that matches one or
more of the scanning channel ID fields, wildcard parameters (“0” value field in Device Number, Device
Type and/or Transaction Type) can be specified when configuring the ID of the channel used for
generating the response.

By using wildcard ID fields in this manner, the overall response latency can be reduced for situations
where the continuous scanning device needs to reply immediately to incoming messages sent by multiple
devices with different IDs.

Asynchronous transmit channel events in the presence of other channels

In S310 v1.0.0, when sending a transmission via a channel configured with the

EXT_PARAM_ASYNC_TX_MODE extended channel type in the presence of other running ANT channels,

the transmission would not occur until after the next scheduled ANT activity has run.

This limitation has now been removed. Asynchronous transmissions, in the presence of other running
channels, are now performed immediately unless it is blocked by a previously scheduled radio activity.
See the figure below.

Fast initiation channel in the presence of other channels

In S310 v1.0.0, when opening a channel configured with the EXT_PARAM_FAST_INITATION_MODE

extended channel type in the presence of other running ANT channels, the channel would not start until
after the next scheduled ANT activity has run.

This limitation has now been removed. Channels configured with fast channel initiation will now start
immediately, unless it is blocked by a previously scheduled radio activity. See the figure below.

Improved continuous scanning channel operation during timeslot activity

ANT continuous scanning channel behavior has been optimized to use more of the available free time
around concurrent application timeslot and flash scheduling activity.

