

All rights reserved.

Reproduction in whole or in part is prohibited without the prior written permission of the copyright holder.

July 9, 2015

User manual

DFU Signing

Experimental implementation

Features: Applications:

 DFU signing for
application firmware
images

 Signing of application firmware images for DFU
updates

 This feature has not
been tested for
bootloader or
SoftDevice updates

 Verification of data from trusted source

 nRF51 Experimental DFU Signing

Revison 0.7 Page 2 of 15

Liability disclaimer

Nordic Semiconductor ASA reserves the right to make changes without further notice to the

product to improve reliability, function or design. Nordic Semiconductor ASA does not assume

any liability arising out of the application or use of any product or circuits described herein.

Life support applications

Nordic Semiconductor’s products are not designed for use in life support appliances, devices, or

systems where malfunction of these products can reasonably be expected to result in personal

injury. Nordic Semiconductor ASA customers using or selling these products for use in such

applications do so at their own risk and agree to fully indemnify Nordic Semiconductor ASA for

any damages resulting from such improper use or sale.

Contact details

For your nearest dealer, please see Hwww.nordicsemi.com

Main office:

Otto Nielsens veg 12

7004 Trondheim

Phone: +47 72 89 89 00

Fax: +47 72 89 89 89

Hwww.nordicsemi.com

RoHS statement

Nordic Semiconductor’s products meet the requirements of Directive 2002/95/EC of the

European Parliament and of the Council on the Restriction of Hazardous Substances (RoHS).

Complete hazardous substance reports as well as material composition reports for all active

Nordic Semiconductor products can be found on our web site www.nordicsemi.com.

Revision History

Date Version Description

July 2015 0.7 Initial release

http://www.nordicsemi.no/
http://www.nordicsemi.no/

 nRF51 Experimental DFU Signing

Revison 0.7 Page 3 of 15

Contents
1 Introduction ... 4

1.1 Prerequisites ... 4
1.2 Resources ... 5

2 ECC signing/verification mechanism .. 5
2.1 Signing concepts ... 5

2.1.1 Signing key .. 5
2.1.2 Verification key ... 5
2.1.3 Signature .. 5

2.2 Signing strategy .. 6
3 Bootloader example ... 6

3.1 Prerequisites ... 6
3.2 Storage of verification key ... 7
3.3 LED assignments .. 7

4 nrf_sec_module .. 7
4.1 License .. 7
4.2 Replacing the nrf_sec_module .. 7

5 pc-nrfutil (experimental) .. 7
5.1 Requirements .. 8
5.2 Setup ... 8
5.3 Commands .. 8

5.3.1 Generating the signing key .. 8
5.3.2 Adding the verification key to the bootloader ... 9
5.3.3 Signing the firmware Image ... 9

6 Master Control Panel Patch ... 10
7 Testing the DFU signing functionality ... 10

7.1 Prerequisites ... 10
7.2 Verifying with master control panel ... 11
7.3 Verifying with a phone ... 13

8 Memory layout .. 15

 nRF51 Experimental DFU Signing

Revison 0.7 Page 4 of 15

1 Introduction

This document covers an experimental implementation of DFU signing.

 The functionality and process of DFU signing is subject to change.

The DFU provides image verification by using Elliptical Curve Cryptography (in the following

referred to as ECC) and the SHA-256 hashing algorithm.

NOTE: This is an experimental implementation and not intended for use in a final product

until the functionality is out of experimental.

1.1 Prerequisites

Note that some prerequisites may be optional depending on method of doing the DFU Transfer.

Item Description

nRF51 Development kit w/dongle The dongle is optional.

Keil uVision 5.14 or later IDE used to compile and program the experimental
bootloader w/signing and the nrf_sec_module.

dfu_test_app_hrm_s110.zip DFU image that can be programmed on the device and
verified by signing.
This project is the Heart Rate Monitor example using
S110.

dfu_test_app_hrm_s110_forged.zip Identical hex file as the previous, but with wrong
signature.

Modified pc-nrfutil Experimental build of pc-nrfutil that can be used to
generate signing key, display verification key, and to
create the DFU images.

Master Control Panel v3.9.0.6 Used for testing DFU transfer. Needs to be patched.
(optional)

Android or iPhone Used for testing DFU transfer. (optional)

nRFTools Used for writing hex files and erasing the flash.

 nRF51 Experimental DFU Signing

Revison 0.7 Page 5 of 15

1.2 Resources

Following is a list of resources available in this experimental DFU signing:

Item Description

bootloader_signing Experimental project with bootloader that supports signing. Available

as a Keil uVision project.

nrf_sec_module Project that includes an open-source implementation to do SHA-256

hashing and ECC verify, accessible by SVC calls.

test_images Signed DFU test images with correct/forged signatures.

pc-nrfutil.zip Modified version of pc-nrfutil that supports key generation, signing,

and packaging of DFU images using a new format.

nrf_sec.h Header file that describes the SVC calls to access functionality in

nrf_sec_module.

2 ECC signing/verification mechanism

2.1 Signing concepts

In the elliptical curve cryptography digital signature algorithm scheme (ECDSA), there are some

concepts that differ in naming from the similar symmetrical cryptography methods, but the

concepts should be shared.

2.1.1 SIGNING KEY

The signing key is equivalent to a private key. It is generated based on an elliptic curve. The

signing key is not meant to be shared with anybody else.

Signing keys generated for the experimental bootloader w/verification are based on the elliptical
curve called NIST P-256 described in RECOMMENDED ELLIPTIC CURVES FOR FEDERAL
GOVERNMENT USE and other sources. This elliptical curve is also known as prime256v1 or
secp256r1.

2.1.2 VERIFICATION KEY

The verification key is equivalent to a public key. It consists of X and Y for a point on the

elliptical curve, and it is used to verify the input data based on the signature. The verification key

is calculated based on the signing key.

2.1.3 SIGNATURE

The signature is generated using a signing key and a hashing algorithm. For our experimental

implementation of bootloader w/signing, we use SHA-256 as the hashing algorithm to generate

the signature.

http://csrc.nist.gov/groups/ST/toolkit/documents/dss/NISTReCur.pdf
http://csrc.nist.gov/groups/ST/toolkit/documents/dss/NISTReCur.pdf

 nRF51 Experimental DFU Signing

Revison 0.7 Page 6 of 15

2.2 Signing strategy

The example project provides a template implementation of data verification based on signing of

the DFU init_packet. This packet contains bootloader update restrictions and the length and a

calculated hash digest of the firmware image.

Once the init_packet has been received by the target during the DFU transfer operation, the

init_packet data (marked as “Signed data” in the image) will be verified based on the signature

(ECDS). Verification is done using ECDSA with the elliptical curve NIST P-256 and the hashing

algorithm SHA-256.

If the verification fails, no action will be taken to program the device and the DFU fallback

behaviour will be activated. If the verification succeeds, normal DFU operation can continue.

From this point on, the DFU transfer works in the same way as previous versions of DFU, but

with the added step of verifying the firmware image once transferred using SHA-256 instead of

a CRC-16 checksum like in previous versions of DFU.

Since the experimental example supports dual-bank DFU operation, the application image will

be downloaded in its entirety before the erase operations begins.

Dual-bank DFU operation is explained in greater details at the following address:

http://infocenter.nordicsemi.com/index.jsp?topic=%2Fcom.nordic.infocenter.sdk51.v9.0.0%2Fbl

edfu_memory_banks.html

3 Bootloader example

The experimental bootloader w/signing is provided as a Keil uVision project available at
<InstallLocation>\examples\experimental\bootloader_signing\pca10028\dual_bank_ble_s
110. Support for Keil Packs, IAR, and GCC will be added at a later stage.

Open the example by double-clicking the .uvprojx file. Compile it by pressing F7 or clicking
Rebuild.

3.1 Prerequisites

The bootloader w/signing example requires the nrf_sec_module and the S110 SoftDevice to be

programmed on the device.

http://infocenter.nordicsemi.com/index.jsp?topic=%2Fcom.nordic.infocenter.sdk51.v9.0.0%2Fbledfu_memory_banks.html
http://infocenter.nordicsemi.com/index.jsp?topic=%2Fcom.nordic.infocenter.sdk51.v9.0.0%2Fbledfu_memory_banks.html

 nRF51 Experimental DFU Signing

Revison 0.7 Page 7 of 15

3.2 Storage of verification key

This example implementation of the bootloader w/signing supports only one verification key.

The verification key is hard-coded into the bootloader. To make the example project work with a

DFU package signed by a signing key, the corresponding verification key must be in place. Any

mismatch will lead to failure to verify.

In future releases of bootloader w/signing this verification key may be placed elsewhere in flash.

In future implementations the bootloader w/signing may support more than one verification key.

3.3 LED assignments

The different states that the bootloader is in are signaled by the LEDs:

 LED 1: Advertising

 LED 2: Connected

 LED 3: Bootloader mode active

4 nrf_sec_module

The security module is provided as a self-contained project that can generate a hex file with
functionality that is accessible by Supervisor calls (SVC calls). The nrf_sec_module provides
the following methods:

 Generate hash digests from input data using SHA-256 hashing algorithm

 Verification of signed data based on input data, verification key, and an ECDS
signature.

4.1 License

The ECC implementation provided with this release is provided under an open-source license.
For the full license text and restrictions for use, modification, and similar, see the header file at

<InstallLocation>\examples\dfu\experimental\nrf_sec_module\ecc\ecc.h.

4.2 Replacing the nrf_sec_module

It is possible to replace code in nrf_sec_module with an alternative implementation of ECC and

the SHA-256 hashing functionality, as long as the signature of the SVC calls defined in

nrf_sec.h is unchanged.

5 pc-nrfutil (experimental)

An experimental version of pc-nrfutil has been bundled with this release to facilitate signing key
generation, verification key printing, firmware image signing, and packaging. This tool is
required to generate DFU images (zip files containing everything that is necessary to set up for
DFU transfer of an image from the host side).

 nRF51 Experimental DFU Signing

Revison 0.7 Page 8 of 15

5.1 Requirements

- Python (2.7.6 or newer, but not version 3. 32-bits)

- pip (https://pip.pypa.io/en/stable/installing.html)

- Python setuptools (upgrade to latest version: pip install --upgrade setuptools)

- Python modules listed in requirements.txt (run pip install -r requirements.txt)

This build of nrfutil relies on publicly available Python libraries that Nordic

Semiconductor has no direct control or ownership over. Any claims to patent

infringement, copyright infringement, and/or other legal liabilities fall on the end user

and are not the responsibility of Nordic Semiconductor.

5.2 Setup

To set up pc-nrfutil, go into the folder <InstallLocation>\examples\dfu\experimental.

Unzip the file called pc-nrfutil .Use the following commands to install the utility as a Python

package:

pip install --upgrade setuptools
pip install -r requirements.txt
python setup.py install

Use the following command to generate a self-contained Windows exe version of the utility:

python setup.py py2exe

The generated executable will be available in a subfolder called 0.2.3. This executable

(nrfutil.exe) can be copied to a more suitable location on your hard drive or it can be run directly

from that folder.

5.3 Commands

5.3.1 GENERATING THE SIGNING KEY

To generate a signing key, run the following command (example):

nrfutil.exe keys --gen-key c:\temp\priv.pem

This will generate a signing key called priv.pem in pem format at the given location. This signing

key is generated using the elliptical curve NIST P-256.

 nRF51 Experimental DFU Signing

Revison 0.7 Page 9 of 15

It is possible to generate signing keys using OpenSSL, but doing so is beyond the scope of this

document. When generating a signing key, it is vital that the elliptical curve NIST P-256 is used

for generation. This curve is available under the alias secp256r1 or prime256v1. Signing keys

generated with any other curve will lead to invalid signatures.

It is vital that the private key is stored securely and with limited access. If the signing key is lost,

it is impossible to reproduce it. Any effort to sign with a different signing key will cause the DFU

operation to fail.

5.3.2 ADDING THE VERIFICATION KEY TO THE BOOTLOADER

The verification key is calculated from the signing key.

To print the verification key, run the following command (example):

nrfutil.exe keys --show-vk=code c:\temp\priv.pem

priv.pem is the input. The output will contain two variables Qx and Qy, similar to this:

static uint8_t Qx[] = { 0x39, 0xb0, 0x58, 0x3d, 0x27, 0x07, 0x91, 0x38, 0x6a,
0xa3, 0x36, 0x0f, 0xa2, 0xb5, 0x86, 0x7e, 0xae, 0xba, 0xf7, 0xa3, 0xf4, 0x81,
0x5f, 0x78, 0x02, 0xf2, 0xa1, 0x21, 0xd5, 0x21, 0x84, 0x12 };
static uint8_t Qy[] = { 0x4a, 0x0d, 0xfe, 0xa4, 0x77, 0x50, 0xb1, 0xb5, 0x26,
0xc0, 0x9d, 0xdd, 0xf0, 0x24, 0x90, 0x57, 0x6c, 0x64, 0x3b, 0xd3, 0xdf, 0x92,
0x3b, 0xb3, 0x47, 0x97, 0x83, 0xd4, 0xfc, 0x76, 0xf5, 0x9d };

These two variables must be copied and placed into the file dfu_init_template_signing.c
replacing the previous definitions in the code.

5.3.3 SIGNING THE FIRMWARE IMAGE

Signing a firmware image requires a signing key. This key can be added using the argument

--key-file when generating the DFU zip image (example):

nrfutil.exe dfu genpkg --application c:\temp\some.hex --key-file
c:\temp\priv.pem c:\temp\dfu_signed.zip

Running this command will convert the hex file (some.hex) to binary, hash it with SHA-256 and
generate an init_packet that is subsequently signed (with priv.pem). The full content is then
packed into a zip file (dfu_signed.zip) that can be programmed using different DFU transfer
methods.

Note that the previous call generates a DFU image that does not provide any form of
device/type or application version restrictions and no restrictions on updateable SoftDevice
versions. To limit what kind of devices the generated DFU-packet can be programmed to, use
any the following optional arguments:

--application-version
--dev-type
--dev-revision
--sd-req

 nRF51 Experimental DFU Signing

Revison 0.7 Page 10 of 15

These arguments are described in the original DFU documentation available online at the
following webpage:

http://infocenter.nordicsemi.com/topic/com.nordic.infocenter.sdk51.v9.0.0/bledfu_exam

ple_image.html

6 Master Control Panel Patch

The Master Control Panel (and an nRF51 dongle) can be used to connect and bond to
Bluetooth devices to inspect profile data and update characteristics. In addition, it supports
over-the-air DFU operations.

The current release of the Master Control Panel, 3.9.0.6, does not support DFU with signing.

There is a patch available at <InstallLocation>\
examples\dfu\experimental\master_control_panel_patch.

This patch is required only for the PC version of Master Control Panel and works only with
version 3.9.0.6.

Copy the files in this directory to:
%PROGRAMFILES(x86)%\Nordic Semiconductor\Master Control Panel\3.9.0.6\lib\dfu

It is possible to use other DFU transfer methods to program the device (like nRF Master Control
Panel for Android or nRF Toolbox for Android or iPhone).

7 Testing the DFU signing functionality

The easiest way to test DFU signing is to use the precompiled and packaged images available
at the following location:

<InstallLocation>\examples\dfu\experimental\test_images

In this folder, there are two DFU image zip files:

Item Description

dfu_test_app_hrm_s110.zip File that has been generated using the key priv.pem

found in the same folder as the test image.

dfu_test_app_hrm_s110_forged.zip File that has been generated with a different private key.

This will fail during verification.

The folder also contains the signing key used to generate the valid DFU-image (priv.pem) and a
precompiled version of the nrf_sec_module (nrf_sec.hex).

http://infocenter.nordicsemi.com/topic/com.nordic.infocenter.sdk51.v9.0.0/bledfu_example_image.html
http://infocenter.nordicsemi.com/topic/com.nordic.infocenter.sdk51.v9.0.0/bledfu_example_image.html

 nRF51 Experimental DFU Signing

Revison 0.7 Page 11 of 15

7.1 Prerequisites

To be able to test these files, the device must have been programmed with a valid S110

SoftDevice, nrf_sec_module, and bootloader w/signing. This is an example of a how to do this,

given that you have all the relevant hex files:

nrfjprog --eraseall
nrfjprog --program <path_to_softdevice.hex>
nrfjprog --program <path_to_nrf_sec.hex>
nrfjprog --program <path_to_bootloader.hex>

It is also possible to do flash programming of nrf_sec_module and the bootloader_signing

project directly from the Keil uVision projects.

After the device has been programmed, it must be put in DFU bootloader mode. This is
indicated by LED 3 being on. To enter DFU bootloader mode, reset the device or hold down
Button 4 and power-cycle the device.

7.2 Verifying with master control panel

This method of verification requires an nRF51 dongle programmed with the master emulator
firmware.

Verifying the image with the patched version of Master Control Panel is done in the following
way:

1. Start the Master Control Panel. Select the COM port that corresponds to the correct
Master Emulator device in the dropdown at the top.

2. Click the button Start discovery.

3. From the list of discovered BLE devices, select the one named DfuTarg and click
Select device.

4. Press Connect and Discover Services. At this point, the DFU button should be
enabled. Click the DFU button. A popup will be shown on the screen. Provide the path
to a zip file from the test_images folder and click Program.

 nRF51 Experimental DFU Signing

Revison 0.7 Page 12 of 15

During flash operation a status window with a progress bar is shown. This process will
be stalled for the duration of the verification, which takes approximately 30 seconds.
After verification is successful, the progress bar should indicate that the data is being
transferred to the device. If transfer is successful and if the hash has been verified, the
following output will be shown:

The device should also restart automatically. If on the other hand verification fails, the
following will be shown:

5. If the transfer was successful, close the programming dialog and click Back in Master
Control Panel to go to the startup screen. Right-click on the list of detected devices and
press clear. Click on the button called Start discovery.

Your device should now be identified as Nordic_HRM (Hearth Rate Monitor).

 nRF51 Experimental DFU Signing

Revison 0.7 Page 13 of 15

7.3 Verifying with a phone

It is possible to do over-the-air DFU using an Android phone or iPhone. This requires the nRF

Toolbox application available from Google Play or iTunes.

In the nRF Toolbox app, click the icon for DFU programming.

Select the zip file image and the device that has the name DfuTarg. Click UPLOAD.

Progress will be shown during operation:

(Example from Android)

 nRF51 Experimental DFU Signing

Revison 0.7 Page 14 of 15

After a succesful transfer, the following screen will be shown:

(Example from Android)

The device will restart if the update was successful. It should now be possible to utilize the HRM

application in nRF Tools to verify that the DFU operation succeeded.

 nRF51 Experimental DFU Signing

Revison 0.7 Page 15 of 15

8 Memory layout

The bootloader w/signing is placed in memory directly underneath nrf_sec_module in the flash
layout.

The last flash page between DFU Bootloader and nrf_sec_module is reserved for the
bootloader to store bootloader-specific settings. This page starts at 0x3D800 and it is 0x400
long.

Besides the placement of the nrf_sec_module, flash memory layout during the different phases
of the DFU transfer should be consistent with the original documentation available at
http://infocenter.nordicsemi.com/topic/com.nordic.infocenter.sdk51.v9.0.0/bledfu_memory.html

http://infocenter.nordicsemi.com/topic/com.nordic.infocenter.sdk51.v9.0.0/bledfu_memory.html

